View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

A SIMPLE SOLUTION OF SOUND TRANSMISSION THROUGH AN ELASTIC WALL TO A
RECTANGULAR ENCLOSURE, INCLUDING WALL DAMPING AND AIR VISCOSITY EFFECTS

Amir N. Nahavandi, Benedict C. Sun, and W. H. Warren Ball
New Jersey Institute of Technology

SUMMARY

This paper presents a simple solution to the problem of the acoustical
coupling between a rectangular structure, its air content, and an external
noise source. This solution is a mathematical expression for the normalized
acoustic pressure inside the structure. The paper also gives numerical results
for the sound-pressure response for a specified set of parameters.

INTRODUCTION

The formulation of the problem is based on the following assumptions:

1. The structure consists of a three-dimensional chamber, oriented with
respect to a Cartesian coordinate system as shown in figure 1. The boundaries
of the chamber are rigid except for an elastic wall, of homogeneous material,
exposed to an external noise source and clamped at all edges.

2. The external noise source is assumed to be a pure-tone @.e., single-
frequency) signal of known amplitude and frequency.

3. The air inside the chamber is considered to behave as a compressible
viscous fluid undergoing oscillations of small magnitude.

4, The elastic wall is considered to behave as a vibrating plate with
linear damping.

The external, incident noise-pressure disturbance causes the elastic wall
to vibrate in the transversal direction, inducing pressure fluctuations inside
the chamber with a subsequent internal pressure loading on the elastic wall.
The solution for the acoustic pressure inside the chamber, when damping and
viscous effects are neglected, has been presented in reference 1; the effects
of air viscosity and wall damping are included in the analysis given in this
paper.
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SYMBOLS

height, width, and length of the chamber
coefficients in the expression for the elastic-wall deflection
speed of sound

D = Eh3/12(1-0%)

Young's modulus for the elastic wall

elastic-wall bending stiffness;
a function of o, B,y , and & , defined by equation (28)
thickness of the elastic wall

i2 = -1

air viscosity damping éoefficient

constants of integration }

coefficients in the expression for the acoustic pressure
sound-pressure level inside the chamber

sound-pressure level at z = ¢

z = c/f2

external sound-pressure level acting on the elastic wall

sound-pressure level at

amplitude of the time—harmonic)external sound-pressure level
weighting function used in the weighted-residual method
time

components of air velocity inside the chamber

deflection of the elastic wall in the positive z-direction
mode shape of the elastic wall

Cartesian coordinates

wall-to-alr mass ratio

wall-to—air stiffness ratio

wall-to-air interaction damping ratio

dimensionless air viscosity damping

4 4 4
R R QM.

3x4 8x28y2 8y4

wall damping coefficilent
chamber width-to-height ratio

separation constants

Separation constants in the expression for the acoustic pressure



I dimensionless parameter defined by equation (29-b)
o density

o Poisson's ratio for the elastie wall

w circular frequency of the external noise
Subscripts: .

a refers to the air inside the chamber

max denotes "maximum value"

W refers to the elastic wall

Superscript:

- .refers to dimensionless quantities
MATHEMATICAL FORMULATION

The governing dynamic equation for the elastic wall is:

- 2
by g WM R TW 1
VW 5t T Pup at2 ) (p—p,) | (1)

The acoustic wave equation for the air contained in the chamber is:

2 2 2 2

3 p + 9 p + op __1 (a Py x BB) (2)
2 2 2 2 2 a at

9x oy oz Cy ot

The boundary conditions for the problem are as follows:
a) The edges of the elastic wall are counsidered to be clamped:

W(OsYst) = W(aSY’t) = W(XQO’t) = W(x,b,t) = 0 (3)

oW _ . _ W _

b) The normal component of the internal air velocity near a rigid boundary
is zero:

VX(O,y,z,t)=vx(a,y,z,t)=vy(x, O,Z,t)=Vy(X,b,Z,t)=VZ(X,Y,O,t)=0 (5)

¢) The normal component of the internal air velocity near the elastic wall
is equal to the wall velocity:
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oW
v, (x,¥,¢,0)=57 (6)

The relationship between the internal air pressure and components of internal
air velocity are:

oV av av .
X __.1 3 _ kv ¥ _ 1 % _ fe L 30 _

, kv , 3 kv (7
d¢ pa ox at pg 9y ay t o 3z az

The external noise pressure is considered to be harmonic in time and expressed

p, =P e (8)
and the objective is to find:
= W(x,y,t) and p = p(x,y,z,t) (9

The solution of equation (2), by separation-of-variables technique, is:

-p(x,y,z,t) = lwt Z Z K Cos™HX Cos——z Cos v_ z (10)
m=0 n= a m
2 wz_iwka m’IT2 nwz
where \)mn = ) - (-5-) - (TJ.—) (ll)
C
a

Application of equations (6) and (7) yields:

0

oW mTx nmw . .

L) - E E ’ K —_— nnry 12

ot Py (k +1m) . m Vmn Cos a Cos b Sin Y (12)
m=0 n=

The value of %‘g is found by integrating equation (1) under the loading

conditions as indicated below:

4 Z;W oW h BZW 1wtl" g mmX n
W ow 2 = —_ - P 13
VW+D 3t+wa32 5 l_(— Cosa Cos—%zCosvmc) o (13)
t m=0n=0
For a solution of the form:
W(x,y,t) = wix,y)e ™t (14)

equation (13) reduces to:

4 ing
Vw + wa—pw -‘W=%[(zZK Cosy-T—}SC s——y-Cos \)mnc) "Po} (15)

m=0 n=0
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Galerkin's method is used to find an approximate solution to equation (15).
In this method, an approximate solution which satisfies the boundary con-
ditions of equations (3) and (4) is first assumed as follows:

M N s
wix,y) = E E a, . 1 - Cosi%i:%;%ﬂEJ [} - Cos(2 —%)2 ] (16)
1= j: ; J
Coefficients are found such that equation (16) satisfies equation (15)
and the sum of tﬁe weighted residuals is identically zero over the region
of integration, i.e.:
ab .
4 1wl;w mrx .
VW + —-D——w— P —w - —(z Z KmnCos Coﬂ Cos v c) P, 4R dxdy=0
m=0n=0
070 (17)

This process is known as the weighted residual method and R is the weighting
function. 1In Galerkin's method, the weighting function is made equal to the
shape function defining the approximation. In general, this leads to the best
approximation when

R = [l - Cos-(—z—]:':—ilz—m—{-:l [ 1 - Cos _(_ZJ:_%_)_QIZ_:] (18)

]
Equation (17) applies for every pair of.integers i and j . Generally there
are MeN simultaneous equations of this form to be solved for the coefficients
a;s: o For the case of 1ow—frepuency normally-incident external noise only the
dlaphragm motion of the wall (first mode) will be excited. For this case,
=1 and N = 1, and integration of equation (17) leads to:

E—— Cos v ic KZO Cos v¢ c - §gg~Cos v..c + K Cos v,.c - P
a = 4 22 2 20 02 00 00 o) (19)
11 4
D /3 231) 2T _; 27 ZTf 9w o
{4[(51 ‘ +(b> * 2 ) ( LD ph‘” ic,)
_ 27X 2 iwt 20
and W(x,y,t) = ajq (1- Cos—;fD a - Cos—%z) e (20)

The values of KZZ’KZO’KOZ’ and KOO are found by substituting the deflection
from equation (20) into equation (12):
©0
(-o? + ik 0)P_ a ) (1- Cosz—“—’—‘) (1—(:os—ﬂ -Z L Kun Vun €05 cos——z Sin v__c
m=0 n=0
(21)

When the left and right sides of equation (21) are equated term by term, it
is found that all the constants K, are zero except KOO,KOZ,KZO, and Kgj.
These are easily found and substituted in equation (19) to give:
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4 4 2 . 2
-0 (3@ @] 1@ & 28 - s,

pa(wz—ikaw)(Cotv ¢ Cot v,.c Cot v..c Cot v c)

22 20 02
+ + +
D 4\)22 2v20 2\)02 v

Referring to equation (10), the acoustic pressure inside the chamber can now
be written as:

, _ dwt 27 +
p(x,y,2,t) = e ( 00 Cos Voo? + KOZ Cos—l;z Cos V22 23
27x 21X 2ny
K20 Cos—-a— Cos Voo Z + K22 Cos p Cos 5 Cos \)222)
To generalize the solution obtained above, the following dimensionless
quantities are introduced:
- x - _y -z - - b - - _h
x=os Y=g, Eeg, aeg, Beg, E=1, =g (24)
-t - _ we I = _P = D
t=—"07, w=g , C=%7, pPp=%", D= 3 - (25)
a 2 a 2 _ Pge
a p_.C p.C p k c
7 = 11 - _ _Wa ~ __aa - _ W 3= -2 (26)
11- ¢ * Pu P Pa p_ > PT=o C
pa a

Using the above dimensionless quantities, equation (23) can be written as:
— - [-2
————— iwt i el Cos z
p(x,y,z,t) = e f(a,B,Y,B)
,[ -16w Sln/ —16(»
2

Cos—z—ﬂy- Cos z jaz— (%T-E ~idw Cos‘—z—-— Cos z /w - (——) -i8w

a

)1M5mﬂ'@ﬂ‘w j -(£ ﬂmsm/ﬁ4§ﬁﬁf

+

Ji- (

D‘I‘N
=

Cosg—:—’—‘- Cos ——%‘5—1 Cos % j 52.(_——2.—“-)2 - (%T-)Z - i%e
- ] (27)

2

2 2 2 _
/a%(ﬁj - () -1 ﬁn/a%@w - () - 55
N a - b a b
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where f(a,8,Y,8) = -1 — BE_— - Jow — + i v ¥
w —idw 4w ~idw) 4(w -1i8w)
2 | 2
Cot f - (2) 155 Cot f - (2L 150
2 + +
-2 ,2m\E - -2 .
2 w - (:.—-) -18w 2 w —(—_—-—) ~idw (28)
a
2 2 =
Cot \/52_ (-E—'F-) - (%1) -idw Cot j w -ifw l
a b
2 2 +
4 faz_ (2) - (&) 185 52155
a b
and
N - (L4 1.0560)pCR - _ Cw (29-3)
o=ph-= oc B = =4 Y p C
a 0.0284b aa
S - 0.9221(3n" + 202 + 3) (29-b)
€2’ a a ~’ (1-0%) (1 + 1.056n°)

Equations (27),(28), and (29) constitute the analytical solution to the acousto-
structural problem. These equations show that the normalized pressure dis-
tribution within the chamber is a harmonic function of time and depends on the
following dimensionless parameters:

1) wall-to-air mass ratio, a

2) wall-to-air stiffness ratio, B

3) wall-to-air interaction damping ratio, Y
4) dimensionless air viscous damping, §

5) dimensionless frequency, w -
6) dimensionless space coordinates, X,y,z
7) enclosure dimensions, a,b,c

NUMERICAL RESULTS

To obtain quantitative values of sound-pressure level as a function of external
noise frequency, a cubical chamber (a=b=c) is assumed, and the amplitude of

the dimensionless sound pressure at the center of the chamber (x=y=z=c/2) is
found: :

- _ Numerator
Pe/2 Denominator (30)
max
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1 1

where Numerator = + ‘ '
2 52155 stmts [ 52150 [oPtn?-155 sints | 5i-tr-185
+ 1
2 / 52-81°-i8s Sink fBZ-Snz-iEa (30-2)

= —=2 —= /—2 L=
and Denominator = 948 _dew + i — e + Cot Ju —idw
-2 .= -2 == =2 L=y
w =-idw A (w -idw) 4w =idw) ’BZ-iEQ

[- _— _ - 2
+ Cot w2—4ﬂ2—16m + Cot w2—8ﬂ -idw
J 52—4ﬂ2-155 4 J 52—8v2—155

(30-b)

The response of this "advanced" three-dimensional model, as given by equation
(30), is compared with that of a "simplified" one-dimensional model obtained
by replacing the elastic wall by a simple spring-mass system. For this sim—

-plified model the amplitude of the sound pressure at the center of the cubical
chamber is:

1 ‘
(2.3 - 2 /& i3 sin k| o’-15s a1
) T T = =
max 8 _ awz § W + Cot wZ—iSw
2, -2 == -2 = T '
w =idw w =idw W -idw ~/ az_iga

!

If the effects of wall damping and air viscosity are neglected, the results
given by equations (30) and (31) agree with the solution in reference 1, in
which damping effects were not considered. Figures 2 and 3 show the frequency
response, for a particular set of dimensionless parameters o and B , over
the audio-frequency range, for the special case of Yy =0 and § =0, i.e.,
when damping effects are neglected. These figures show that at intermediate
frequencies and at the high-frequency end of the.audible spectrum, the pre-
dictions of "advanced" and "simplified" models are quite similar.

When damping effects are included, i.e., when both Y and & are not zero,
the digital computer program for the frequency response is very complicated,
involving complex numbers and requiring double~precision (16 digits) accuracy.
Results for this case will be published later.
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Figure l.- Three dimensional model of sound transmission through an
elastic wall to a rectangular chamber.
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Figure 2.~ Chamber frequengy response to external noise source at low
frequency for o =25, 8 = 3.125, y = 0, and § = 0.

Q0004 —|
00003 —]

00002 —

c/a)mox

P

Iy mppp—
-
/*

0.0001 —

o —joorr " 10277

~0.0001 —

ADVANCED MODEL

= eeee SIMPLIFIED MODEL
=00002 —{

DIMENSIONLESS PRESSURE,{

-00003 —|

-0.0004
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