2,481 research outputs found

    Static and non-static quantum effects in two-dimensional dilaton gravity

    Get PDF
    We study backreaction effects in two-dimensional dilaton gravity. The backreaction comes from an R2R^2 term which is a part of the one-loop effective action arising from massive scalar field quantization in a certain approximation. The peculiarity of this term is that it does not contribute to the Hawking radiation of the classical black hole solution of the field equations. In the static case we examine the horizon and the physical singularity of the new black hole solutions. Studying the possibility of time dependence we see the generation of a new singularity. The particular solution found still has the structure of a black hole, indicating that non-thermal effects cannot lead, at least in this approximation, to black hole evaporation.Comment: 10 pages, no figure

    Decoherent Scattering of Light Particles in a D-Brane Background

    Get PDF
    We discuss the scattering of two light particles in a D-brane background. It is known that, if one light particle strikes the D brane at small impact parameter, quantum recoil effects induce entanglement entropy in both the excited D brane and the scattered particle. In this paper we compute the asymptotic `out' state of a second light particle scattering off the D brane at large impact parameter, showing that it also becomes mixed as a consequence of quantum D-brane recoil effects. We interpret this as a non-factorizing contribution to the superscattering operator S-dollar for the two light particles in a Liouville D-brane background, that appears when quantum D-brane excitations are taken into account.Comment: 18 pages LATEX, one figure (incorporated

    A Deformation of Twistor Space and a Chiral Mass Term in N=4 Super Yang-Mills Theory

    Full text link
    Super twistor space admits a certain (super) complex structure deformation that preserves the Poincare subgroup of the symmetry group PSL(4|4) and depends on 10 parameters. In a previous paper [hep-th/0502076], it was proposed that in twistor string theory this deformation corresponds to augmenting N=4 super Yang-Mills theory by a mass term for the left-chirality spinors. In this paper we analyze this proposal in more detail. We calculate 4-particle scattering amplitudes of fermions, gluons and scalars and show that they are supported on holomorphic curves in the deformed twistor space.Comment: 52 pages, 15 figure

    Tachyon Field Quantization and Hawking Radiation

    Full text link
    We quantize the tachyon field in a static two dimensional dilaton gravity black hole background,and we calculate the Hawking radiation rate. We find that the thermal radiation flux, due to the tachyon field, is larger than the conformal matter one. We also find that massive scalar fields which do not couple to the dilaton, do not give any contribution to the thermal radiation, up to terms quadratic in the scalar curvature.Comment: 13 pages, Latex file, 1 figure available upon reques

    X-ray absorption spectroscopy studies of Ba1-xCaxTiO3

    Get PDF
    [[abstract]]We report x-ray absorption near edge spectroscopy (XANES) of Ca and O K-edges of Ba1-xCaxTiO3 (x = 0, 0.01, 0.08, 1) and understand the spectral features related to the electronic structure of these perovskites. The XANES spectra of Ca K-edge possess a pre-edge peak similar to other 3d transition metals like Ti, Ni when present in perovskite structure and provides information about p-type or hole doping. Presence of considerable amount of 3d states justifies the reason to consider it as a light 3d transition metal. The O K-edge spectra display characteristic spectral features assigned as eg and t2g and show strong dependence on concentration.[[notice]]補正完畢[[journaltype]]國外[[booktype]]紙本[[booktype]]電子版[[countrycodes]]US

    Gauge symmetries of strings in supertwistor space

    Get PDF
    Recently we have considered supertwistor reformulation of the D=4 N=1,2 superstring action that comprises Newman-Penrose dyad components and is classically equivalent to the Green-Schwarz one. It was shown that in the covariant kappa-symmetry gauge the supertwistor representation of the string action simplifies. Here we analyze its Hamiltonian formulation, classify the constraints on the phase-space variables, and find the covariant set of generators of the gauge symmetries. Quantum symmetries of the supertwistor representation of the string action are examined applying the world-sheet CFT technique. Considered are various generalizations of the model from the perspective of their possible relation to known twistor superstring models.Comment: 17 pages, LaTeX; v.2 minor changes in the text, references added, misprints correcte

    Cosmological Evolution of a Brane Universe in a Type 0 String Background

    Get PDF
    We study the cosmological evolution of a D3-brane Universe in a type 0 string background. We follow the brane-universe along the radial coordinate of the background and we calculate the energy density which is induced on the brane because of its motion in the bulk. We find that for some typical values of the parameters and for a particular range of values of the scale factor of the brane-universe, the effective energy density is dominated by a term proportional to 1(loga)4\frac{1}{(loga)^{4}} indicating a slow varying inflationary phase. For larger values of the scale factor the effective energy density takes a constant value and the brane-universe enters its usual inflationary period.Comment: 25 pages,1 figure,LaTex file,final version to appear in Phys. Rev.

    The Supersonic Project: The Early Evolutionary Path of Supersonically Induced Gas Objects

    Get PDF
    Supersonically induced gas objects (SIGOs) are a class of early universe objects that have gained attention as a potential formation route for globular clusters. SIGOs have recently begun to be studied in the context of molecular hydrogen cooling, which is key to characterizing their structure and evolution. Studying the population-level properties of SIGOs with molecular cooling is important for understanding their potential for collapse and star formation, and for addressing whether SIGOs can survive to the present epoch. Here, we investigate the evolution of SIGOs before they form stars, using a combination of numerical and analytical analysis. We study timescales important to the evolution of SIGOs at a population level in the presence of molecular cooling. Revising the previous formulation for the critical density of collapse for SIGOs allows us to show that their prolateness tends to act as an inhibiting factor to collapse. We find that simulated SIGOs are limited by artificial two-body relaxation effects that tend to disperse them. We expect that SIGOs in nature will be longer lived compared to our simulations. Further, the fall-back timescale on which SIGOs fall into nearby dark matter halos, potentially producing a globular-cluster-like system, is frequently longer than their cooling timescale and the collapse timescale on which they shrink through gravity. Therefore, some SIGOs have time to cool and collapse outside of halos despite initially failing to exceed the critical density. From this analysis we conclude that SIGOs should form stars outside of halos in nonnegligible stream velocity patches in the universe

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure
    corecore