46 research outputs found
Characterization of Newly Revealed Sequences in the Infectious Myonecrosis Virus Genome in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e
Infectious myonecrosis virus (IMNV) causes significant economic losses in farmed shrimp, where associated mortality in ponds can reach 70%. To explore host/pathogen interactions, a next-generation sequencing approach using lymphoid organ tissue from IMNV-infected Litopenaeus vannamei shrimp was conducted. Preliminary sequence assembly of just the virus showed that there were at least an additional 639 bp at the 5′ terminus and 23 nt at the 3′ terminus as compared with the original description of the IMNV genome (7561 nt). Northern blot and reverse transcription-PCR analysis confirmed the presence of novel sequence at both ends of the genome. Using 5′ RACE, an additional 4 nt were discovered; 3′ RACE confirmed the presence of 22 bp rather than 23 bp of sequence. Based on these data, the IMNV genome is 8226 bp in length. dsRNA was used to trigger RNA interference (RNAi) and suppress expression of the newly revealed genome sections at the 5′ end of the IMNV genome in IMNV-infected L. vannamei. An RNAi trigger targeting a 376 bp length of the 5′ UTR did not improve survival of infected shrimp. In contrast, an RNAi trigger targeting a 381 bp sequence in ORF1 improved survival to 82.2% as compared with 2.2% survival in positive control animals. These studies revealed the importance of the new genome sections to produce high-titre infection, and associated disease and mortality, in infected shrimp
Characterization of Newly Revealed Sequences in the Infectious Myonecrosis Virus Genome in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e
Infectious myonecrosis virus (IMNV) causes significant economic losses in farmed shrimp, where associated mortality in ponds can reach 70%. To explore host/pathogen interactions, a next-generation sequencing approach using lymphoid organ tissue from IMNV-infected Litopenaeus vannamei shrimp was conducted. Preliminary sequence assembly of just the virus showed that there were at least an additional 639 bp at the 5′ terminus and 23 nt at the 3′ terminus as compared with the original description of the IMNV genome (7561 nt). Northern blot and reverse transcription-PCR analysis confirmed the presence of novel sequence at both ends of the genome. Using 5′ RACE, an additional 4 nt were discovered; 3′ RACE confirmed the presence of 22 bp rather than 23 bp of sequence. Based on these data, the IMNV genome is 8226 bp in length. dsRNA was used to trigger RNA interference (RNAi) and suppress expression of the newly revealed genome sections at the 5′ end of the IMNV genome in IMNV-infected L. vannamei. An RNAi trigger targeting a 376 bp length of the 5′ UTR did not improve survival of infected shrimp. In contrast, an RNAi trigger targeting a 381 bp sequence in ORF1 improved survival to 82.2% as compared with 2.2% survival in positive control animals. These studies revealed the importance of the new genome sections to produce high-titre infection, and associated disease and mortality, in infected shrimp
Sequence-optimized and targeted double-stranded RNA as a therapeutic antiviral treatment against infectious myonecrosis virus in \u3ci\u3eLitopenaeus vannamei\u3c/i\u3e
Infectious myonecrosis virus (IMNV) is a significant and emerging pathogen that has a tremendous impact on the culture of the Pacific white shrimp Litopenaeus vannamei. IMNV first emerged in Brazil in 2002 and subsequently spread to Indonesia, causing large economic losses in both countries. No existing therapeutic treatments or effective interventions currently exist for IMNV. RNA interference (RNAi) is an effective technique for preventing viral disease in shrimp. Here, we describe the efficacy of a double-stranded RNA (dsRNA) applied as an antiviral therapeutic following virus challenge. The antiviral molecule is an optimized dsRNA construct that targets an IMNV sequence at the 5’ end of the genome and that showed outstanding antiviral protection previously when administered prior to infection. At least 50% survival is observed with a low dose of dsRNA administered 48 h post-infection with a lethal dose of IMNV; this degree of protection was not observed when dsRNA was administered 72 h post-infection. Additionally, administration of the dsRNA antiviral resulted in a significant reduction of the viral load in the muscle of shrimp that died from disease or survived until termination of the present study, as assessed by quantitative RT-PCR. These data indicate that this optimized RNAi antiviral molecule holds promise for use as an antiviral therapeutic against IMNV
RNA Nanovaccine Protects against White Spot Syndrome Virus in Shrimp
In the last 15 years, crustacean fisheries have experienced billions of dollars in economic losses, primarily due to viral diseases caused by such pathogens as white spot syndrome virus (WSSV) in the Pacific white shrimp Litopenaeus vannamei and Asian tiger shrimp Penaeus monodon. To date, no effective measures are available to prevent or control disease outbreaks in these animals, despite their economic importance. Recently, double-stranded RNA-based vaccines have been shown to provide specific and robust protection against WSSV infection in cultured shrimp. However, the limited stability of double-stranded RNA is the most significant hurdle for the field application of these vaccines with respect to delivery within an aquatic system. Polyanhydride nanoparticles have been successfully used for the encapsulation and release of vaccine antigens. We have developed a double-stranded RNA-based nanovaccine for use in shrimp disease control with emphasis on the Pacific white shrimp L. vannamei. Nanoparticles based on copolymers of sebacic acid, 1,6-bis(pcarboxyphenoxy) hexane, and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane exhibited excellent safety profiles, as measured by shrimp survival and histological evaluation. Furthermore, the nanoparticles localized to tissue target replication sites for WSSV and persisted through 28 days postadministration. Finally, the nanovaccine provided ~80% protection in a lethal WSSV challenge model. This study demonstrates the exciting potential of a safe, effective, and field-applicable RNA nanovaccine that can be rationally designed against infectious diseases affecting aquaculture
Characterization of in-barn heat processed swine mortalities
In-barn heat processing of mass swine mortalities to inactivate pathogens could facilitate more carcass disposal options and reduce the risk of pathogen spread in the event of a foreign animal disease (FAD) outbreak. A 12.2 × 12.2 × 2.4 m (W × L × H) heat processing room was created using a temporary wall inside a de-commissioned commercial gestation barn in northwest Iowa. Eighteen swine carcasses (six per group) divided into three weight groups (mean ± SD initial carcass weights: 31.8 ± 3.3, 102.7 ± 8.1, and 226.3 ± 27.6 kg) were randomly assigned a location inside the room. Three carcasses per weight group were placed directly on concrete slats and on a raised platform. One carcass per weight group and placement (n=6) was instrumented with five temperature sensors, inserted into the brain, pleura, peritoneal, ham, and bone marrow of the femur, and a sensor was attached directly to the skin surface. Environmental conditions (ambient and room) and carcass temperatures were collected at 15-min intervals. Carcasses were subjected to an average room temperature of 57.3 ± 1.2°C for 14 days. The average (±SD) reduction from initial weight for the carcasses on slats was 45.0 ± 4.70% (feeder), 33.0 ± 8.30% (market), and 34.0 ± 15.80% (sow), and for the carcasses on a raised platform, it was 39.0 ± 6.80% (feeder), 49.0 ± 11.30% (market), and 45.0 ± 6.70% (sow). There was a significant interaction between carcass placement (slats and raised) and carcass weight loss for the market weight group. When average carcass surface temperature was at 40.6, 43.3, and 46.1°C (data grouped for analysis), the average internal carcass temperature for most measurement locations was significantly different across carcass weight groups and between the carcasses on a raised platform and those on slats. This preliminary analysis of carcass weight loss, leachate production, and temperature variation in carcasses of different sizes can be used for planning and evaluating mass swine mortality management strategies
Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis
Metastasis is the primary cause of cancer-related mortality. Tumor cell interactions with cells of the vessel wall are decisive and potentially rate-limiting for metastasis. The molecular nature of this cross-talk is, beyond candidate gene approaches, hitherto poorly understood. Using endothelial cell (EC) bulk and single-cell transcriptomics in combination with serum proteomics, we traced the evolution of the metastatic vascular niche in surgical models of lung metastasis. Temporal multiomics revealed that primary tumors systemically reprogram the body’s vascular endothelium to perturb homeostasis and to precondition the vascular niche for metastatic growth. The vasculature with its enormous surface thereby serves as amplifier of tumor-induced instructive signals. Comparative analysis of lung EC gene expression and secretome identified the transforming growth factor–β (TGFβ) pathway specifier LRG1, leucine-rich alpha-2-glycoprotein 1, as an early instructor of metastasis. In the presence of a primary tumor, ECs systemically up-regulated LRG1 in a signal transducer and activator of transcription 3 (STAT3)–dependent manner. A meta-analysis of retrospective clinical studies revealed a corresponding up-regulation of LRG1 concentrations in the serum of patients with cancer. Functionally, systemic up-regulation of LRG1 promoted metastasis in mice by increasing the number of prometastatic neural/glial antigen 2 (NG2)+ perivascular cells. In turn, genetic deletion of Lrg1 hampered growth of lung metastasis. Postsurgical adjuvant administration of an LRG1-neutralizing antibody delayed metastatic growth and increased overall survival. This study has established a systems map of early primary tumor-induced vascular changes and identified LRG1 as a therapeutic target for metastasis
Low expression of aldehyde deyhdrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer
<p>Abstract</p> <p>Background</p> <p>Aldehyde deyhdrogenase 1 (ALDH1) has been characterised as a cancer stem cell marker in different types of tumours. Additionally, it plays a pivotal role in gene regulation and endows tumour cells with augmented chemoresistance. Recently, ALDH1A1 has been described as a prognostic marker in a pancreatic cancer tissue microarray. The aim of this study was to reevaluate the expression of ALDH1A1 as a prognostic marker on whole-mount tissue sections.</p> <p>Methods</p> <p>Real-time-quantitative-PCR (qRT-PCR) and Western blotting were used to evaluate the expression profile of ALDH1A1 in seven pancreatic cancer cell lines and one non-malignant pancreatic cell line. Immunostaining against ALDH1A1 and Ki-67 was performed on paraffin-embedded samples from 97 patients with pancreatic cancer. The immunohistochemical results were correlated to histopathological and clinical data.</p> <p>Results</p> <p>qRT-PCR and Western blotting revealed a different expression pattern of ALDH1A1 in different malignant and non-malignant pancreatic cell lines. Immunohistochemical analysis demonstrated that ALDH1A1 was confined to the cellular cytoplasm and occurred in 72 cases (74%), whereas it was negative in 25 cases (26%). High expression of ALDH1A1 was significantly correlated to an increased proliferation rate (Spearman correlation, p = 0.01). Univariate and multivariate analyses showed that decreased expression of ALDH1A1 is an independent adverse prognostic factor for overall survival.</p> <p>Conclusions</p> <p>Immunonhistochemical analysis on whole-mount tissue slides revealed that ALDH1A1 is more abundantly expressed in pancreatic cancer than initially reported by a tissue microarray analysis. Moreover, high expression of ALDH1A1 correlated significantly with the proliferation of tumour cells. Intriguingly, this study is the first which identifies low expression of ALDH1A1 as an independent adverse prognostic marker for overall survival in pancreatic cancer.</p