6,478 research outputs found

    Adhesive for aluminum withstands cryogenic temperatures

    Get PDF
    Polyurethane adhesive mixed to various proportions with milled glass fibers match the thermal characteristics of 2014-T6 aluminum at cryogenic temperatures

    Fermion Masses and Mixings in a String Inspired Model

    Get PDF
    In the context of Calabi-Yau string models we explore the origin of characteristic pattern of quark-lepton masses and the CKM matrix. The discrete RR-symmetry ZK×Z2Z_K \times Z_2 is introduced and the Z2Z_2 is assigned to the RR-parity. The gauge symmetry at the string scale, SU(6)×SU(2)RSU(6) \times SU(2)_R, is broken into the standard model gauge group at a very large intermediate energy scale. At energies below the intermediate scale down-type quarks and also leptons are mixed with unobserved heavy states, respectively. On the other hand, there are no such mixings for up-type quarks. Due to the large mixings between light states and heavy ones we can derive phenomenologically viable fermion mass hierarchies and the CKM matrix. Mass spectra for intermediate-scale matter beyond the MSSM are also determined. Within this framework proton lifetime is long enough to be consistent with experimental data. As for the string scale unification of gauge couplings, however, consistent solutions are not yet found.Comment: 49 pages, 1 figure, Latex Revised version includes discussion on FCNC problems. Final version to appear in Prog. Theor. Phys. Vol.96 No.

    ASCA view on High-Redshift Radio-Quiet Quasars

    Get PDF
    We briefly discuss the latest ASCA results on the X-ray spectral properties of high-redshift radio-quiet quasars.Comment: 4 pages, 1 figure, to appear in the Proceedings of the Conference "X-ray Astronomy '999: Stellar Endpoints, AGNs, and the Diffuse X-ray Background (September 6-10 - 1999

    How Can We Obtain a Large Majorana-Mass in Calabi-Yau Models ?

    Get PDF
    In a certain type of Calabi-Yau superstring models it is clarified that the symmetry breaking occurs by stages at two large intermediate energy scales and that two large intermediate scales induce large Majorana-masses of right-handed neutrinos. Peculiar structure of the effective nonrenormalizable interactions is crucial in the models. In this scheme Majorana-masses possibly amount to O(10^{9 \sim 10}\gev) and see-saw mechanism is at work for neutrinos. Based on this scheme we propose a viable model which explains the smallness of masses for three kind of neutrinos νe,νμ and ντ\nu _e, \nu _{\mu} \ {\rm and}\ \nu _{\tau}. Special forms of the nonrenormalizable interactions can be understood as a consequence of an appropriate discrete symmetry of the compactified manifold.Comment: 30-pages + 6-figures, LaTeX, Preprint DPNU-94-02, AUE-01-9

    ASCA Observations of the Seyfert 2 Galaxy NGC 7582: An Obscured and Scattered View of the Hidden Nucleus

    Full text link
    ASCA observations of the Seyfert 2 galaxy NGC 7582 revealed it was highly variable on the timescale of 2×104\sim2\times10^4 s in the hard X-ray (2-10 keV) band, while the soft X-ray (0.5-2 keV) flux remained constant during the observations. The spectral analysis suggests that this object is seen through an obscuring torus with the thickness of NH1.0×1023cm2_{\rm H}\sim1.0\times 10^{23}\rm cm^{-2}. The hard X-ray is an absorbed direct continuum from a hidden Seyfert 1 nucleus; the soft X-ray is dominated by the scattered central continuum from an extended spatial region. Thus we have an obscured/absorbed and a scattered view of this source as expected from the unification model for Seyfert galaxies. More interestingly, the inferred X-ray column was observed to increase by 4×1022cm2\sim4\times10^{22} \rm cm^{-2} from 1994 to 1996, suggesting a ``patchy'' torus structure, namely the torus might be composed of many individual clouds. The observed iron line feature near 6.4 keV with the equivalent width of 170 eV is also consistent with the picture of the transmission of nuclear X-ray continuum through a non-uniform torus.Comment: 10 pages, 6 figures. To be appear in PASJ 50 No.5 (1998 Oct.25 issue

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E 6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width \simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    Spin Polarized versus Chiral Condensate in Quark Matter at Finite Temperature and Density

    Get PDF
    It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodynamics. It is indicated within this low energy effective model that the chiral symmetry is broken again by the spin polarized condensate as increasing the quark number density, while the chiral symmetry restoration occurs in which the chiral condensate disappears at a certain density.Comment: 25 pages, 9 figure

    Probing the stellar wind environment of Vela X-1 with MAXI

    Full text link
    Vela X-1 is among the best studied and most luminous accreting X-ray pulsars. The supergiant optical companion produces a strong radiatively-driven stellar wind, which is accreted onto the neutron star producing highly variable X-ray emission. A complex phenomenology, due to both gravitational and radiative effects, needs to be taken into account in order to reproduce orbital spectral variations. We have investigated the spectral and light curve properties of the X-ray emission from Vela X-1 along the binary orbit. These studies allow to constrain the stellar wind properties and its perturbations induced by the compact object. We took advantage of the All Sky Monitor MAXI/GSC data to analyze Vela X-1 spectra and light curves. By studying the orbital profiles in the 4104-10 and 102010-20 keV energy bands, we extracted a sample of orbital light curves (15{\sim}15% of the total) showing a dip around the inferior conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged and phase-resolved spectra of both the double-peaked and the standard sample. The dip in the double-peaked sample needs NH2×1024N_H\sim2\times10^{24}\,cm2^{-2} to be explained by absorption solely, which is not observed in our analysis. We show how Thomson scattering from an extended and ionized accretion wake can contribute to the observed dip. Fitted by a cutoff power-law model, the two analyzed samples show orbital modulation of the photon index, hardening by 0.3{\sim}0.3 around the inferior conjunction, compared to earlier and later phases, hinting a likely inadequacy of this model. On the contrary, including a partial covering component at certain orbital phase bins allows a constant photon index along the orbital phases, indicating a highly inhomogeneous environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&
    corecore