423 research outputs found

    Numerical treatment of the Filament Based Lamellipodium Model (FBLM)

    Full text link
    We describe in this work the numerical treatment of the Filament Based Lamellipodium Model (FBLM). The model itself is a two-phase two-dimensional continuum model, describing the dynamics of two interacting families of locally parallel F-actin filaments. It includes, among others, the bending stiffness of the filaments, adhesion to the substrate, and the cross-links connecting the two families. The numerical method proposed is a Finite Element Method (FEM) developed specifically for the needs of these problem. It is comprised of composite Lagrange-Hermite two dimensional elements defined over two dimensional space. We present some elements of the FEM and emphasise in the numerical treatment of the more complex terms. We also present novel numerical simulations and compare to in-vitro experiments of moving cells

    Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 3 - Static tests of noise suppressor configurations, May 1967 - October 1969

    Get PDF
    Static tests of noise suppressor configurations of DC-8 aircraft nacelle modifications to reduce fan-compressor noise levels - Part

    An acoustical study of the KIWI B nuclear rocket

    Get PDF
    Kiwi B nuclear rocket acoustics - sound pressure distribution, energy conversion, and power distributio

    Kinetic modelling of colonies of myxobacteria

    Get PDF
    A new kinetic model for the dynamics of myxobacteria colonies on flat surfaces is derived formally, and first analytical and numerical results are presented. The model is based on the assumption of hard binary collisions of two different types: alignment and reversal. We investigate two different versions: a) realistic rod-shaped bacteria and b) artificial circular shaped bacteria called Maxwellian myxos in reference to the similar simplification of the gas dynamics Boltzmann equation for Maxwellian molecules. The sum of the corresponding collision operators produces relaxation towards nematically aligned equilibria, i.e. two groups of bacteria polarized in opposite directions. For the spatially homogeneous model a global existence and uniqueness result is proved as well as exponential decay to equilibrium for special initial conditions and for Maxwellian myxos. Only partial results are available for the rod-shaped case. These results are illustrated by numerical simulations, and a formal discussion of the macroscopic limit is presented

    Compressional and Shear Waves Tests Through Upper Sheet of Low Angle Thrust Fault

    Get PDF
    Compressional and shear wave tests were conducted on the upper thrust sheet of the low angle Little Salmon thrust fault. The study was conducted on the campus of the College of the Redwoods. The campus is located approximately 8 miles south of Eureka and 24 miles north-northeast of Cape Mendocino and the Mendocino Triple Junction (MTJ) in Northern California. The MTJ is the point of transition from strike-slip faulting of the San Andreas transform system to low-angle reverse (thrust) faulting and folding associated with the convergent margin of the Cascadia Subduction Zone. The campus is located on the southwest limb of the Humboldt Hill anticline, one of the folds in the fold and thrust belt. The Little Salmon fault zone is a low angle thrust fault that day lights on the south side of the campus and then projects underneath striking northwest and dipping northeast. A boring was drilled down to the fault plane located at a depth of 200 ft. in the upper thrust block to develop a mode1 of the stratification as well as the material properties. The boring also revealed the trunk of a redwood tree located at a depth of 180 feet. Results of compressional and shear wave velocities as a function of depth that were determined using an downhole geophysical technique. Results indicated two shear wave velocity units. Unit 1 was from 0 to 120 ft. with a shear wave velocity ranging from 950- 1400 fps. Unit 2 ranged from 120 to 190 ft. with a shear wave velocity ranging from 2300 to 2600 fps. Compression wave velocity measurements obtained from the same test boring also depict a change in velocity in the 100 to 120 foot range. A response spectra was generated based on this in-situ mode1 using SHARE91 and compared against one developed using the Boore, Joyner and Fumal empirical model

    Maximum Likelihood Estimation of Head Motion Using Epipolar Consistency

    Get PDF
    Open gantry C-arm systems that are placed within the interventional room enable 3-D imaging and guidance for stroke therapy without patient transfer. This can profit in drastically reduced time-totherapy, however, due to the interventional setting, the data acquisition is comparatively slow. Thus, involuntary patient motion needs to be estimated and compensated to achieve high image quality. Patient motion results in a misalignment of the geometry and the acquired image data. Consistency measures can be used to restore the correct mapping to compensate the motion. They describe constraints on an idealized imaging process which makes them also sensitive to beam hardening, scatter, truncation or overexposure. We propose a probabilistic approach based on the Student’s t-distribution to model image artifacts that affect the consistency measure without sourcing from motion

    Probabilistic Estimation of Site Specific Fault Displacements

    Get PDF
    The College of the Redwoods (CR) located near Eureka, California would like to upgrade a series of existing buildings that are unfortunately located on secondary faults associated with the active Little Salmon Fault (LSF) zone. In the early 1990’s a deterministic value of the maximum dip-slip displacement that had occurred on one of these secondary faults located beneath the southeast building corner of the former library was measured to be 1.7 feet. This displacement was resolved into approximately 1.5 feet horizontal offset and 0.8 feet of vertical offset, based on the secondary fault plane dip. Geologically, it has not been possible to establish the actual dates of the occurrence of the displacements on the observed faults, therefore it was assumed that they all had occurred within the last 11,000 years. The structural engineer for the project has indicated that it was not possible to design for the observed ground displacement of 1.7 feet. This limited study was undertaken to assess the variation of ground displacements that were observed over the area of ground occupied by CR’s Administration, Science, and former Library buildings. The purpose of this study was to evaluate the reasonableness of using a deterministically determined maximum value of displacement in estimating, and designing mitigations for, the structural response, or whether a probabilistic approach could be utilized. The only data available within the limited time frame allowed for the study was from a series of trench logs made as part of a project for locating building sites on the campus in the early 1990’s. As a first step the frequency distributions of both horizontal and vertical displacements located in a volume of soil comprising the area occupied by the above buildings to a depth of 14 feet were examined. The 14 feet was the maximum depth of the trenches used to provide data for the study. Probability density functions (PDF) versus displacements were developed based on the frequency distributions. The area under the PDF curves between given displacement intervals represents the probability of occurrence (POC) of that displacement. A cumulative probability of occurrence for a displacement interval can be determined by adding the individual POC’s. Based on this it was estimated that a horizontal displacement of ≤ 1.0 foot has a probability of 89% of occurring in the next 11,000 years at the site. In contrast, a vertical displacement of ≤ 1.0 foot has a probability of 88% probability of occurrence

    Use of Microzonation to Site Facility on Low Angle Thrust and Associated Fault Bend Folding

    Get PDF
    The campus of the College of the Redwoods is located completely within the Little Salmon Fault Zone, designated by the State of California as an active fault. The College has been extensively investigated for fault rupture and other seismic hazards in 1989, 1993, 1997, 1998, and 1999. The Little Salmon Fault Zone bounds the College and consists of two main northwest-striking, northeastdipping, low-angle thrusts. The west splay daylights along the southwest edge of the campus and projects beneath it. A recurrence interval of 268 years and slip rate of 5+/-3 mm/yr is estimated by CDMG. Individual dip-slip displacements along the west trace are reported to be 12 to 15 feet (3.6 to 4.5 m). Movement on the Little Salmon fault (LSF) is accompanied by growth of broad asymmetric folds in the upper thrust sheet resulting in surface rupture, localized uplift and discreet fault-bend fold axial surfaces. College of the Redwoods is located approximately 8 miles (13 km) south of Eureka and 25 miles (40 km) north-northeast of Cape Mendocino and the Mendocino Triple Junction (MTJ) in northern California. The \u27MTJ is the point of transition fi-om strike-slip faulting of the San Andreas transform system to low-angle thrust faulting and folding associated with the convergent margin of the Cascadia Subduction Zone. Campus infrastructure is located along the base of the Humboldt Hill Anticline (HHA), a major faultbend fold of the Cascadia fold and thrust belt. A new learning resource center (LRC) is proposed for a location 400 feet (120 m) northeast of where the west trace of the LSF daylights and 200 feet (60 m) above the low-angle fault plane. Building setback and design recommendations to mitigate for both fault rupture hazards and fault-generated folding hazards are presented

    Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers

    Get PDF
    We address the "Additive Equivalence" discovered by Virk and coworkers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar Maximum Drag Reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte

    The Fc region of an antibody impacts the neutralization of West Nile viruses in different maturation states

    Get PDF
    Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection
    • …
    corecore