22 research outputs found

    Combined Effect of Dietary Cadmium and Benzo(a)pyrene on Metallothionein Induction and Apoptosis in the Liver and Kidneys of Bank Voles

    Get PDF
    Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesis—a low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6 weeks, the female bank voles were provided with diet containing Cd [less than 0.1 Όg/g (control) and 60 Όg/g dry wt.] and BaP (0, 5, and 10 Όg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5 Όg/g did not affect but BaP 10 Όg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cd + BaP 10-ÎŒg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys

    Automatische Diagnose akuter IschÀmie am Patientenbett mit ultraschallbasiertem Bolus Harmonic Imaging

    No full text

    REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft

    Get PDF
    Aircraft crew are one of the groups of radiation workers which receive the highest annual exposure to ionizing radiation. Validation of computer codes used routinely for calculation of the exposure due to cosmic radiation and the observation of nonpredictable changes in the level of the exposure due to solar energetic particles, requires continuous measurements onboard aircraft. Appropriate calibration of suitable instruments is crucial, however, for the very complex atmospheric radiation field there is no single reference field covering all particles and energies involved. Further intercomparisons of measurements of different instruments under real flight conditions are therefore indispensable. In November 2017, the REFLECT (REsearch FLight of EURADOS and CRREAT) was carried out. With a payload comprising more than 20 different instruments, REFLECT represents the largest campaign of this type ever performed. The instruments flown included those already proven for routine dosimetry onboard aircraft such as the Liulin Si-diode spectrometer and tissue equivalent proportional counters, as well as newly developed detectors and instruments with the potential to be used for onboard aircraft measurements in the future. This flight enabled acquisition of dosimetric data under well-defined conditions onboard aircraft and comparison of new instruments with those routinely used. As expected, dosimeters routinely used for onboard aircraft dosimetry and for verification of calculated doses such as a tissue equivalent proportional counter or a silicon detector device like Liulin agreed reasonable with each other as well as with model calculations. Conventional neutron rem counters underestimated neutron ambient dose equivalent, while extended-range neutron rem counters provided results comparable to routinely used instruments. Although the responses of some instruments, not primarily intended for the use in a very complex mixed radiation field such as onboard aircraft, were as somehow expected to be different, the verification of their suitability was one of the objectives of the REFLECT. This campaign comprised a single short flight. For further testing of instruments, additional flights as well as comparison at appropriate reference fields are envisaged. The REFLECT provided valuable experience and feedback for validation of calculated aviation doses

    An Extracytoplasmic Function Sigma Factor-Mediated Cell Surface Signaling System in Pseudomonas syringae pv. tomato DC3000 Regulates Gene Expression in Response to Heterologous Siderophores ▿ †

    No full text
    The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen Pseudomonas syringae pv. tomato DC3000 responds to iron limitation and have focused on the iron starvation (IS) sigma factors to identify regulon members and to explore the mechanistic details of genetic control for this class of regulators. In the study described in this report, we used chromatin immunoprecipitation paired with high-throughput sequencing (ChIP-Seq) to screen the genome for locations associated with binding of the P. syringae IS sigma factor PSPTO_1203. We used multiple methods to demonstrate differential regulation of two genes identified in the ChIP-Seq screen and characterize the promoter elements that facilitate PSPTO_1203-dependent regulation. The genes regulated by PSPTO_1203 encode a TonB-dependent transducer (PSPTO_1206) and a cytoplasmic membrane protein (PSPTO_2145), which is located in the P. syringae pyoverdine cluster. Additionally, we identified siderophores that induce the activity of PSPTO_1203 and used this information to investigate the functional components of the signal transduction cascade
    corecore