41 research outputs found

    The necking time of gas bubbles in liquids of arbitrary viscosity

    Get PDF
    We report an experimental and theoretical study of the collapse time of a gas bubble injected into an otherwise stagnant liquid under quasi-static conditions and for a wide range of liquid viscosities.This work has been supported by the Spanish MINECO (Subdirección General de Gestión de Ayudas a la Investigación), Junta de Andalucía, and European Funds under Project Nos. DPI2014-59292-C3-1-P, DPI2014-59292-C3-3-P, and P11-TEP7495. Financial support from the University of Jaén, Project No. UJA2013/08/05, is also acknowledged

    Modeling of the bubbling process in a planar co-flow configuration

    Get PDF
    This work presents an analytical model developed to describe the bubbling regime resulting from the injection of an air sheet of thickness 2H(o) with a mean velocity u(a) between two water streams of thickness H-w - H-o, moving at a uniform velocity u(w). Based on previous experimental and numerical characterizations of this flow, the gas stream is modeled as a two-dimensional sheet divided into three different parts in the streamwise direction: a neck that moves downstream at the water velocity, a gas ligament attached to the injector upstream of the neck, and a forming bubble downstream of the neck, whose uniform dimensionless half-thicknesses are eta(n)(tau), eta(l)(tau), eta(b)(tau) respectively, and the corresponding pressures are given by Pi(n)(tau), Pi(l)(tau), and Pi(b)(tau) Pi(n)(tau). Lengths are made dimensionless with H-o, and pressures with rho(a)u(a)(2) where rho(a) is the air density.This work has been supported by the Spanish MINECO (Subdi-rección General de Gestión de Ayudas a la Investigación), Junta de Andalucía, and European Funds under projects numbers DPI2014-59292-C3-1-P and DPI2014-59292-C3-3-P, and P11-TEP7495. Financial support from the University of Jaén, project UJA2013/08/05, is also acknowledged

    On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency

    Full text link
    The transient evolution of the bubble-size probability density functions resulting from the breakup of an air bubble injected into a fully developed turbulent water ow has been measured experimentally using phase Doppler particle sizing (PDPA) and image processing techniques. These measurements were used to determine the breakup frequency of the bubbles as a function of their size and of the critical diameter Dc defined as Dc = 1.26 ([sigma]/[rho])3/5[epsilon][minus sign]2/5, where [epsilon] is the rate of dissipation per unit mass and per unit time of the underlying turbulence. A phenomenological model is proposed showing the existence of two distinct bubble size regimes. For bubbles of sizes comparable to Dc, the breakup frequency is shown to increase as ([sigma]/[rho])[minus sign]2/5[epsilon][minus sign]3/5 [surd radical]D/Dc[minus sign]1, while for large bubbles whose sizes are greater than 1.63Dc, it decreases with the bubble size as [epsilon]1/3D[minus sign]2/3. The model is shown to be in good agreement with measurements performed over a wide range of bubble sizes and turbulence intensitie

    Experimental characterization of starting jet dynamics

    Get PDF
    The dynamics of a laminar starting jet are explored in a series of laboratory experiments and numerical simulations. We identify new, objective methods for characterizing the leading vortex ring, enabling robust comparisons with results from a numerical model. Observations of circulation in the initial vortex ring and for the total jet are reported along with strain rate at the leading stagnation point. Growth and pairing of shear instabilities trailing the leading vortex ring is observed. Development of these secondary vortices and their subsequent interactions with the leading vortex has significant effects on the characteristics of the primary vortex ring. Strong fluctuations in strain rate at the leading edge are associated with the pairing of the initial vortex ring with a trailing secondary ringSupport for this research was provided by the Spanish MEC and European Union under Projects # ENE2005-08580-C02-01 and DPI2005-08654-C04-01Publicad

    Global mode analysis of axisymmetric bluff-body wakes: Stabilization by base bleed

    No full text
    International audienceThe flow around a slender body with a blunt trailing edge is unstable in most situations of interest. Usually the flow instabilities are generated within the wake behind the bluff body, inducing fluctuating forces and introducing the possibility of resonance mechanisms with modes of the structure. Base bleed is a simple and well-known means of stabilizing the wake. In the present research, we investigate the global instability properties of the laminar-incompressible flow that develops behind a cylinder with sharp edges and axis aligned with the free stream using a spectral domain decomposition method. In particular, we describe the flow instability characteristics as a function of the Reynolds number, Re=?W8D/µ, and the bleed coefficient, defined as the bleed-to-free-stream velocity ratio, Cb=Wb/W8, where D is the diameter of the body and ? and µ the density and viscosity of the free stream, respectively. For a truncated cylinder of aspect ratio L/D=5, where L is the length of the body, our calculations reveal the presence of a first steady bifurcation in the wake at Re?391, as well as a second oscillatory one at Re?715 with an associated Strouhal number St?0.0905 for the most unstable azimuthal mode {pipe}m{pipe}=1. In addition, we report the existence of two critical values of the bleed coefficient Cb1*(Re,{pipe}m{pipe}) and Cb2*(Re,{pipe}m{pipe}) < Cb1*, which vary with the aspect ratio of the body, needed to stabilize both the first and second bifurcations in the range of Reynolds numbers under study, 0=Re=2200. Finally, the numerical results for the oscillatory mode obtained for a bulletlike body of aspect ratio L/D=2 without base bleed are compared with experiments performed in a wind tunnel using hot-wire anemometry, showing the limitations of using an axisymmetric basic flow at Reynolds numbers higher than the critical one corresponding to the first steady bifurcation in the global stability analysis. © 2009 American Institute of Physics

    Controlled formation of bubbles in a planar co-flow configuration

    Get PDF
    We present a new method that allows to control the bubble size and formation frequency in a planar air-water co-flow configuration by modulating the Water velocity at the nozzle exit. The forcing process has been experimentally characterized determining the amplitude of the water velocity fluctuations from measurements of the pressure variations in the water stream. The effect of the forcing on the bubbling process has been described by analyzing the pressute signals in the air stream in combinatiOn with visualizations performed with a high-speed camera. We show that, when the forcing amplitude is sufficiently large, the bubbles can be generated at a rate different from the natural bubbling frequency, f(n), which depends on the water-to-air velocity ratio, Lambda u(n)/u(q), and the Weber number, We rho(w)u(n)(2)H(0)/sigma, where 110 is the half-thickness of the air stream at the exit slit, rho(w), the water density and a the surface tension coefficient. Consequently, when the forcing is effective, monodisperse bubbles, of sizes smaller than those generated without stimulation, are produced at the prescribed frequency, f(f) > f(n). The effect of the forcing process on the bubble size is also characterized by measuring the resulting intact length, 1, i.e. the length of the air stem that remains attached to the injector when a bubble is released. In addition, the physics behind the forcing procedure is explained as a purely kinematic mechanism that is added to the effect of the pressure evolution inside the air stream that would take place in the unforced case. Finally, the downstream position of the maximum perturbation amplitude has been determined by a one-dimensional model, exhibiting a good agreement with both experiments and numerical simulations performed with OpenFOAM.This work has been supported by the Spanish MINECO (Subdirección General de Gestión de Ayudas a la Investigación), Junta de Andalucía and European Funds, grants Nos. DPI2014-59292-C3-1-P, DPI2014-59292-C3-3-P, P11-TEP7495. Financial support from the University of Jaén, Project No. UJA2013/08/05, is also acknowledged

    Negatively buoyant starting jets

    Get PDF
    The initial development of negatively buoyant jets has been investigated experimentally and numerically, focusing on the role played by gravity in the evolution of the leading vortex ring. Under the experimental conditions considered in this work, the densimetric Froude number, Fr= ρjU²j/[(ρ₀ − ρj) gD] , which represents the ratio between the jet momentum and the buoyancy forces, emerges as the most relevant parameter characterizing the dynamics of the flow. Two different flow regimes have been observed depending on the Froude number: for sufficiently small Fr, the vortex ring generated initially is pushed radially away by gravity forces before it has time to detach from the shear layer originating at the orifice. On the other hand, when the Froude number is larger than a critical value, Fr> Frc∼ 1, the vortex ring detaches from the injection orifice and propagates downstream into the stagnant ambient followed by a trailing jet until it eventually reaches a maximum penetration depth. In order to clarify the mechanisms leading to the transition between the two regimes, and to gain physical understanding of the formation dynamics of negatively buoyant starting jets, the total and the vortex circulation, as well as the trajectory of the vortex center, have been measured and compared to the case of neutrally buoyant jets. Finally, based on the experimental measurements and on the results of the numerical computations, a kinematic model that successfully describes the evolution of both total circulation and vortex trajectory is proposed.This work was supported by the Spanish Ministry of Education under Project Nos. DPI2008-06624-C03-02 and ENE2008-0615-C04. This work has been extracted from the Ph.D. thesis of Marugán-CruzPublicad
    corecore