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We report an experimental and theoretical study of the collapse time of a gas bubble
injected into an otherwise stagnant liquid under quasi-static conditions and for a wide
range of liquid viscosities. The experiments were performed by injecting a constant
flow rate of air through a needle with inner radius a into several water/glycerine
mixtures, providing a viscosity range of 20 cP . µ . 1500 cP. By analyzing the tem-
poral evolution of the neck radius, R0(t), the collapse time has been extracted for three
different stages during the collapse process, namely, Ri/a = 0.6, 0.4, and 0.2, being
Ri = R0(t = 0) the initial neck radius. The collapse time is shown to monotonically
increase with both Ri/a and with the Ohnesorge number, Oh = µ/

√
ρσRi, where

ρ and σ represent the liquid density and the surface tension coefficient, respectively.
The theoretical approach is based on the cylindrical Rayleigh-Plesset equation for the
radial liquid flow around the neck, which is the appropriate leading-order represen-
tation of the collapse dynamics, thanks to the slenderness condition R0(t) r1(t) ≪ 1,
where r1(t) is half the axial curvature of the interface evaluated at the neck. The
Rayleigh-Plesset equation can be integrated numerically to obtain the collapse time,

τcol, which is made dimensionless using the capillary time, tσ =

ρR3

i /σ. We present
a novel scaling law for τcol as a function of Ri/a and Oh that closely follows the exper-
imental data for the entire range of both parameters, and provide analytical expres-
sions in the inviscid and Stokes regimes, i.e., τcol(Oh → 0) → √

2 ln C and τcol(Oh →
∞) → 2Oh, respectively, where C is a constant of order unity that increases with
Ri/a. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944973]

I. INTRODUCTION

Bubble generation in viscous liquids constitutes a matter of increasing interest in many appli-
cations related with magma, polymer melts, or molten metals and glasses, among many others (see
Ref. 1 and references therein). In particular, the formation of a bubble that grows quasi-statically
from a submerged injector inside a stagnant liquid has been the most studied configuration, due to
its simplicity and importance in many engineering applications. Nevertheless, most of the studies
about bubble formation inside quiescent liquids have been devoted to the case of inviscid liquids
(see Refs. 2–8, among others). The bubbles generated under quasi-static conditions have almost
the same size, determined by a quasi-static balance between surface tension and buoyancy forces,
leading to the so-called Fritz volume, VF = 2πσa/(ρg), where σ is the surface tension coefficient,
a is the inner injector radius, and ρ is the liquid density. This quasi-static regime prevails when the
gas flow rate is smaller than a critical value of the order of Qc ≃ π(16/3g2)1/6(σ a/ρ)5/6 for inviscid
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liquids9 and Qc ≃ ρgV 4/3
F /µ for viscous liquids.10 Under these conditions, the bubble formation can

be described as a two-stage phenomenon.9 On the one hand, after the detachment of the previous
bubble, a quasi-static expansion stage begins, where the gas stem that remains attached to the
injector tip grows axially and radially until the forming bubble is large enough for the buoyancy
force to overtake the surface tension force. On the other hand, the expansion stage is followed by a
dynamic collapse stage, where a neck appears at the interface in the vicinity of the nozzle exit, the
bubble shape becomes unstable, and the neck accelerates radially inwards leading to its pinch-off
and the consequent detachment of the forming bubble.

In the present work, we focus on the duration of the collapse stage and its dependence on the
liquid viscosity. Previous works on the subject have been devoted to analyze the neck shrinking
phenomenon, but only during the last instants, previous to the pinch-off of the bubble, which has
been traditionally described by a power law (R0/a) ∼ (τcol − τ)α, where R0 is the radius of the neck
and (τcol − τ) indicates the dimensionless time remaining to pinch-off. In the inviscid limit, it is
now well established that α & 1/2, its exact value depending on the initial conditions and actually
varying during the collapse process.4,6,8,11–16 The effect of liquid viscosity on the global collapse
time of a bubble has been comparatively less studied. In the Stokes limit of negligible liquid inertia,
the balance between surface tension and viscous forces in the surrounding liquid gives a minimum
radius that decreases linearly with time6,11,17 and correspondingly α = 1. For intermediate values
of liquid viscosity, referred to as the transition regime by Burton et al.11 and Thoroddsen et al.,6 α
is observed to increase from the inviscid to the Stokes value, 1/2 . α ≤ 1, as the liquid viscosity
increases. This transition range has also been investigated by Bolaños-Jiménez et al.,17 where it was
revealed that the local Reynolds number, Rel = ρR0Ṙ0/µ, where the dot indicates time derivative,
becomes O(1) during the collapse process. Correspondingly, the instantaneous exponent α(τ) in-
creases during pinch-off from α & 0.58 when Rel & O(1) to α ≃ 1 when Rel ≪ 1. In Ref. 17, it
is also shown that an alternative description of the last instants prior to pinch-off reproduces the
experimental results in the entire range of liquid viscosities, including the smooth transition from
the inviscid to the viscous-dominated pinch-off that takes place within the previously mentioned
transition regime of intermediate liquid viscosities.

All the aforementioned works on the bubble collapse stage are devoted to the description of
the dynamics only during the last instants prior to break-up. There are also many previous studies
focused on the effect of the liquid viscosity on general characteristics of the gas bubble, such as
its size, shape, rise behavior, and coalescence.18–24 However, the main goal of the present work is
to experimentally characterize in detail the duration of the collapse stage of a bubble generated
quasi-statically as a function of the liquid viscosity, starting from neck radii of the order of the
injector radius, as well as to provide a simple scaling law for the global necking time. The paper
is structured as follows. Section II is devoted to describe the experimental facility, the experi-
mental conditions, and the control parameters, as well as the techniques used to analyze the images
recorded in the experiments. In Section III, the problem is analyzed by means of theory. In partic-
ular, the cylindrical Rayleigh-Plesset equation is used to describe the radial flow in the slender neck
region and linearized to obtain a scaling law for the collapse time as a function of the Ohnesorge
number. Finally, Section IV summarizes the main conclusions.

II. EXPERIMENTAL MEASUREMENTS

To investigate the influence of liquid viscosity on the bubble collapse time, several sets of
experiments were performed using the facility described in Bolaños-Jiménez et al..17 It consists
of an injector of inner radius a located at the bottom of a reservoir made of Plexiglas, through
which a constant air flow rate, Q, was injected (see Figs. 1(a) and 1(b)). The gas feeding system
was designed such that the influence of Q is negligible, and therefore, the bubbling process takes
place under quasi-static conditions. The bubbles generated under these conditions have practically
the same size regardless of Q, determined by a balance between surface tension and buoyancy
forces, leading to the so-called Fritz Volume, VF = 2πσa/(ρg). In this regime, the inertial and
viscous forces in the liquid are negligible during the bubble expansion stage but become important
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FIG. 1. (a) Sketch of the flow configuration with the physical parameters. Rc is a point placed sufficiently far away from the
neck. (b) Image extracted from a high-speed movie (10 000 fps), showing the entire collapsing bubble in a water-glycerine
mixture (experiment G7 in Table I). (c) Image corresponding to the same experimental conditions shown in (b) but taken
from a 50 000 fps movie recorded at the length scale of the needle radius.

during the collapse stage studied herein. To confirm that quasi-static conditions were accomplished,
the final volume of the bubble, VB, was extracted from the experiments, obtaining VB ≃ VF in all
cases. The liquid viscosity µ was varied by using six different water/glycerine mixtures, achieving
a range of 20 cP . µ . 1500 cP. Moreover, two different needles with inner radii of 1.025 and
2.55 mm were employed, as reported in Table I. The mixtures were carefully prepared by measuring
the glycerine mass fraction, x, with an accuracy of ±0.02 g in the measurements of the water
and glycerine masses. The homogeneity of the mixtures was ensured by a slow stirring process
that avoided the entrance of ambient air. The density and the viscosity were first measured at
room temperature before performing the experiments and compared with the values obtained from
interpolation of high-precision Dow Corning tables as a function of both the mass fraction, x, and
temperature, T , obtaining a good agreement. This validated the use of the Dow Corning tables and

TABLE I. Summary of the experiments performed using glycerin-water mixtures, together with the values of the dimensional
parameters and the Ohnesorge number defined with the needle radius, Oha = µ/

√
ρ σ a. Here, x indicates the glycerin mass

fraction. The relative errors in density and surface tension are smaller than 1% in all cases.

Expt. a (mm) x (%) T (◦C) ρ (kg/m3) σ (N/m) µ (cP) Oha

G1 1.025 70 18.6 1182 0.0669 24.3 ± 0.6 0.085 ± 0.004
G2 1.025 83 20.2 1216 0.0652 88.1 ± 2.8 0.309 ± 0.017
G3 1.025 91 19.5 1235 0.0642 229.4 ± 10.2 0.80 ± 0.05
G4 1.025 95 16.6 1251 0.0635 686.9 ± 31.6 2.41 ± 0.17
G5 1.025 97 17.3 1256 0.0632 965.6 ± 45.3 3.4 ± 0.2
G6 1.025 99 17.8 1261 0.0629 1411.9 ± 66.2 4.9 ± 0.3
G7 2.550 70 18.8 1182 0.0669 24.1 ± 0.6 0.053 ± 0.002
G8 2.550 83 21.4 1216 0.0651 81.8 ± 2.5 0.182 ± 0.007
G9 2.550 91 20.2 1235 0.0642 217.4 ± 9.6 0.48 ± 0.03
G10 2.550 95 18.2 1250 0.0635 597.7 ± 26.8 1.33 ± 0.07
G11 2.550 97 20.7 1254 0.0631 714.7 ± 31.6 1.59 ± 0.09
G12 2.550 99 17.4 1261 0.0629 1466.8 ± 66.2 3.26 ± 0.19
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confirmed the homogeneity of the mixtures. Thus, the values of the properties reported in Table I are
the results given by the Dow Corning tables using the temperature registered during the experiment,
which was precisely monitored and controlled with a temperature probe (accuracy of ±0.5 ◦C)
placed inside the liquid pool. The accuracy of the temperature and mass measurements resulted
in some uncertainty in the corresponding viscosity and, consequently, in the Ohnesorge number
based on the needle radius Oha = µ/

√
ρσ a, as reported in Table I, with a maximum relative error

of ≃5% in the viscosity and ≃7% in Oha, which also included the accuracy in the measurements
of the injector radius (±0.05 mm). Since the present work focuses on the global collapse process,
high-speed movies at the scale of the needle radius were recorded at 50 000 fps (Fig. 1(c)) with
spatial resolutions between 16 and 33 µm/pixel.

The physical parameters governing our experiment are the inner radius of the needle a, the
surface tension coefficient σ, the gravitational acceleration g, the air flow rate Q, the densities
of both the liquid, ρ, and the gas, ρg , and the liquid and gas viscosities, µ and µg , respectively.
As shown in Bolaños-Jiménez et al.,17 the influence of the gas density, ρg ≪ ρ, and viscosity,
µg ≪ µ, can be neglected except in the last few microseconds prior to pinch-off,25 and the pres-
sure can be considered spatially uniform inside the bubble. Therefore, the collapsing process is
controlled by only two dimensionless parameters, namely, the Bond number, Bo = ρ g a2/σ, and
the Reynolds number, Re = ρ vσ Ri/µ = 1/Oh, where vσ =


σ/(ρRi) is the capillary velocity, Ri

the initial radius of the neck, and Oh = µ/
√
ρσ Ri the Ohnesorge number based on the initial neck

radius. Notice that, for convenience, the initial neck radius, Ri = R0(t = 0), has been used in the
present work as characteristic length scale, instead of the nozzle radius, a, used in Ref. 17. Thus,
the Ohnesorge number defined with the nozzle radius is Oha = Oh

√
Ri/a. The value of Oha for the

different liquid mixtures used in the present study can be found in Table I.
The experimental results were obtained from the high-speed movies using standard edge-

finding routines. In particular, the temporal evolution of the neck radius, R0(t), was analyzed to
investigate the influence of the liquid viscosity on the collapse time, as can be observed in Figs. 2(a)
and 2(b). The collapse time tcol, defined such that R0(tcol) = 0, was obtained for each experimental
run by extrapolating the last ten values of R0 prior to pinch-off. The resulting value had an uncer-
tainty of one frame (0.02 ms) in all the cases except in the most viscous ones (G5, G6, G12), where
the uncertainty increases to 2 or 3 frames due to the formation of a thin air thread before the bubble
pinch-off. The final value of tcol for each experiment was determined by averaging the results of

FIG. 2. (a) Temporal evolution of the neck radius, R0(t), obtained from the experiments with the glycerine-water mixtures
G1-G6 and (b) G7-G12 reported in Table I. For clarity, not all the symbols are shown, and the neck radius is made
dimensionless with the injector radius, a, so that all the experiments can be represented in a single plot. (c) Dimensionless
collapse time extracted from (a) and (b) as a function of Oh for different stages of the collapse process, namely, Ri/a = 0.2
(hollow symbols), Ri/a = 0.4 (grey symbols), and 0.6 (black symbols). The experiments with silicone oils for Ri/a = 0.2
have been taken from Ref. 17. Several experiments with water taken from Ref. 8 have also been added to obtain the inviscid
limit Oh→ 0. The solid line corresponds to the Stokes limit Oh ≫ 1, in which τcol→ 2Oh, while the dashed line is the
inviscid limit given by Eq. (17) for the collapse time, 0.6, 0.9, and 1.29, corresponding to each collapse stage, respectively.
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at least five different collapse events, obtaining a very small standard deviation. The corresponding
error associated to the averaged values in Figs. 2(b) and 4 was calculated as the maximum be-
tween the error associated with the temporal resolution and the standard deviation corresponding
to the averaged value. The error bars are plotted in Figs. 2(b) and 4, although they cannot be
observed because they are smaller than the symbols that cover them. The resulting dimensionless
collapse time, τcol = tcol/tσ, where tσ = (ρR3

i /σ)1/2 is the capillary time based on the initial neck
radius, is shown in Fig. 2(c) for three different stages of the collapse, namely, Ri/a = 0.6, 0.4, and
0.2. To determine the inviscid limit, Oh → 0, several experiments with water are also plotted in
Fig. 2(c), taken from Bolaños-Jiménez et al.8 (Nozzles III, VI, and VIII in their Table I, for which
Oha = 4.2 × 10−3, 2.6 × 10−3, and 2.1 × 10−3, respectively). In addition, for the case of Ri/a = 0.2,
the experiments with silicone oils O1-O8 of Table I in Bolaños-Jiménez et al.17 have also been
displayed to contemplate the transition regime, which corresponds to intermediate values of Oh
in Fig. 2(c). This figure reveals that the collapse time increases monotonically with both Oh and
Ri/a and also that three different regimes can be distinguished: (i) the inviscid limit Oh ≪ 1, for
which τcol tends to a constant that depends only on Ri/a, (ii) the transition regime for Oh ∼ O(1),
where τcol increases with Oh, and (iii) a linear trend corresponding to the Stokes limit achieved for
Oh ≫ 1, for which τcol → 2Oh. The value of Oh for which the latter limit is achieved increases with
Ri/a.

III. SCALING OF THE COLLAPSE TIME

The present section is devoted to provide a scaling law for the collapse time able to describe
the dependence of τcol on Oh and Ri/a shown in the experimental data displayed in Fig. 2(c). To
that end, first, the conservation equations are applied to the liquid surrounding the collapsing neck
obtaining, as a first approximation, the cylindrical Rayleigh-Plesset (R-P) equation that provides the
temporal evolution of the neck radius. Next, by linearizing the R-P equation, a simple analytical
expression for the bubble collapse time is obtained.

The shape of the interface near the neck, where the radius takes its minimum value R0(t), is
known to be locally parabolic,8,12,14,15,25,26 rs(z, t) = R0(t) + r1(t) z2, where r1(t) is the semi-axial
curvature evaluated at the neck and z is the axial coordinate, being z = 0, which varies with time,
the neck position (see Fig. 1(a)). Previous experiments have demonstrated that the local shape
around the neck is slender8,17 since R0 r1 ≪ 1. Therefore, L/R0, where L ∝ R0/(R0r1)1/2, is the
characteristic axial length scale, grows during the collapse process, the local shape evolving towards
a cylinder as pinch-off is approached, R0 r1 → 0. Thus, for simplicity, in the following development,
the neck is assumed to accomplish the slenderness condition R0 r1 ≪ 1, and correspondingly, the
liquid flow is considered purely radial, v⃗ = v(r, t) e⃗r , where e⃗r denotes the unit vector in the radial
direction, while v(r, t) is obtained from the liquid continuity equation,

v =
Ṙ0 R0

r
, (1)

where Ṙ0 = dR0/dt. The radial momentum equation for the liquid then writes

ρ



R̈0 R0 + Ṙ2
0

r
−

Ṙ2
0 R2

0

r3


= −∂p

∂r
, (2)

where Eq. (1) has been used for the radial velocity, and the viscous term is identically zero due
to the fact that the liquid velocity field is irrotational, as shown in Ref. 25. Equation (2) can be
integrated in the radial direction inside the liquid surrounding the neck, namely, between r = R0(t)
and a certain point r = Rc placed far away from the neck, Rc ≫ R0 to obtain

ln
(

Rc

R0

)
(R0 R̈0 + Ṙ2

0) −
1
2

Ṙ0
2
=

p(R0) − p(Rc)
ρ

, (3)

which is just the cylindrical Rayleigh-Plesset equation, subject to the initial conditions R0(t = 0) =
Ri and Ṙ0(t = 0) = vi.
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Note that p(R0) − p(Rc) is the liquid pressure difference driving the collapse, which is estab-
lished between the interface and the point Rc far away the neck. To obtain this pressure difference,
the equilibrium of normal stresses at the interface in the region around the neck must be considered,

pg − p(R0) + n⃗ · ¯̄τ′ · n⃗ = σ∇ · n̄, (4)

where the viscous stresses in the gas region have been neglected, ¯̄τ′g ≪ ¯̄τ′, and the normal viscous
stress is given by n⃗ · ¯̄τ′ · n⃗ = −2µṘ0/R0. On the other hand, thanks to the slenderness condition, the
curvature in Eq. (4) simplifies to ∇ · n⃗ = 1/R0. Thus, Eq. (4) finally writes

pg − p(R0) − 2µ
Ṙ0

R0
=

σ

R0
, (5)

where the pressure inside the bubble is pg = p(R0) + σ/R0 + 2µṘ0/R0. Furthermore, considering pg
uniform and neglecting buoyancy effects, the pressure inside the bubble must be equal to the liquid
pressure at r = Rc, pg = p(Rc). Thus, the pressure difference across the liquid field becomes

p(R0) − p(Rc) = − σ

R0
− 2µ

Ṙ0

R0
. (6)

Substituting Eq. (6) into Eq. (3), the Rayleigh-Plesset equation becomes,

ln
(

Rc

R0

)
(R0 R̈0 + Ṙ2

0) −
1
2

Ṙ0
2
= − σ

ρR0
− 2µ

Ṙ0

ρR0
, (7)

with R0(t = 0) = Ri and Ṙ0(t = 0) = vi < 0 as initial conditions. Introducing the dimensionless vari-
ables η(τ) = R0(t)/Ri and τ = t/tσ, with tσ = (ρR3

i /σ)1/2 the capillary time based on the initial
neck radius Ri, Eq. (7) can be expressed as


ln

(
C1

η

) �
ηη̈ + η̇2� − 1

2
η̇2

η = −1 − 2 Ohη̇, (8)

with the initial conditions η(0) = 1 and η̇(0) = η̇i = vi/vσ, being vσ =

σ/(ρ Ri) the capillary ve-

locity, and C1 = Rc/Ri.
Equation (8) does not have an analytical solution for η(τ), but it can be solved numeri-

cally. In particular, for the inviscid limit, the collapse time, τcol, i.e., the time at which η = 0,
can be calculated by integrating Eq. (8) numerically for Oh → 0. Specifically, the results corre-
sponding to Oh = 10−3 are plotted in Fig. 3(a) for Ri/a = 0.2 and in Fig. 3(b) for Ri/a = 0.4
and Ri/a = 0.6, obtaining a collapse time of τcol = 0.6 (Ri/a = 0.2), τcol = 0.9 (Ri/a = 0.4), and
τcol = 1.3 (Ri/a = 0.6), in agreement with the experimental values observed in Fig. 2(c) for the three
cases for Oh ≪ 1. The values of the initial velocities considered in Eq. (8), and provided in Table II,
have been extracted from the experimental measurements. Moreover, the temporal evolution of the
neck radius given by Eq. (8) is able to reproduce the experimental data, as can be observed in
Fig. 3(c), where a particular case corresponding to water (Oh = 3.3 × 10−3) is plotted. Note that
a good agreement is obtained even though this case corresponds to Ri/a = 0.6, and therefore the
initial radius is still far from the pinch-off.

For the viscous limit, on the other hand, it is immediate to provide an analytical expression
from Eq. (8) for the collapse time valid for Oh → ∞. In this limit, the inertial effects are negligible,
and thus, the surface tension effects are balanced with the viscous forces. From Eq. (8), we obtain
1 = 2 Oh η̇, which can be integrated to yield, 0

1
dη = − 1

2 Oh

 τcol

0
dτ → τcol(Oh → ∞) = 2 Oh. (9)

As expected, the collapse time grows linearly with Oh. This viscous limit has been plotted in
Fig. 2(c), showing a very good agreement with the experimental data, especially in the case
Ri/a = 0.2.

The approach adopted in the present work to obtain an analytical expression for the collapse
time consists of linearizing Eq. (8). To that end, the dimensionless neck radius is written as
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FIG. 3. Temporal evolution of the dimensionless neck radius for the inviscid limit, Oh ≪ 1. (a) Integration of the Rayleigh-
Plesset equation (Eq. (8)) for Oh= 10−3, Ri/a = 0.2, η̇i =−0.6, and C1= 2 (solid line), together with the result obtained
from the linearized version (dotted line), η = 1−ε, with ε given by Eq. (12). (b) Integration of the Rayleigh-Plesset equation
(Eq. (8)) for Oh= 10−3, Ri/a = 0.4 (solid line) with η̇i =−0.3 and C1= 5, and Ri/a = 0.6 (dashed line), with η̇i =−0.1
and C1= 10. (c) Integration of Eq. (8) (solid line) for the particular case of Oh= 0.0033 and Ri/a = 0.6, together with the
experimental data (symbols) corresponding to an experiment in water (nozzle VI of Table I in Ref. 8).

η = 1 − ε(τ), being 0 < ε(τ) ≪ 1, and Eq. (8) provides the following linear evolution equation for
the perturbed radius ε(τ),

ε̈ ln C + 2 Oh ε̇ = 1 −


1
2
− ln C


ε̇2
i , (10)

with ε(0) = 0 and ε̇(0) = −η̇(0) = ε̇i as initial conditions. In Eq. (10), a constant C different from
C1 used in Eq. (8) needs to be introduced since, as it will be shown later, the collapse time is over-
estimated by the linearized equation if the value of C is retained. Equation (10) can be analytically
integrated, giving

ε(τ) = 1 − (1/2 − ln C)ϵ̇2
i

2 Oh
τ − *

,
ϵ̇ i −

1 − (1/2 − ln C)ϵ̇2
i

2 Oh
+
-

ln C
2 Oh


exp

(
−2 Oh

ln C
τ

)
− 1


. (11)

Now, if the Taylor expansion of the exponential function is applied to the last term in Eq. (11),
one gets

ε(τ) = *
,

1 − (1/2 − ln C) ϵ̇2
i

2
− ϵ̇ i Oh+

-

τ2

ln C
+ ϵ̇ i τ. (12)

The temporal evolution of the dimensionless neck radius, η = 1 − ε, with ε given by Eq. (12), has
been plotted in Fig. 3(a) for Oh = 10−3 and Ri/a = 0.2 with C = C1 = 2. Note that the linearized

TABLE II. Experimental value of the initial neck velocity, η̇i, and constants
C1 used in Eq. (8) and C used in Eq. (12) for the three stages of the collapse
studied here.

Ri/a η̇i C1 C

0.2 −0.6 2 1.2
0.4 −0.3 5 1.5
0.6 −0.1 10 2.3
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FIG. 4. Dimensionless collapse time as a function of the Ohnesorge number for the three stages: (a) Ri/a = 0.2, (b) Ri/a =

0.4, and (c) Ri/a = 0.6. Symbols correspond to the experiments, while solid lines are the results provided by Eq. (19). The
dashed lines represent the inviscid (Eq. (17)) and the viscous (Eq. (9)) limits, respectively.

equation initially follows the result given by the complete Rayleigh-Plesset equation, although it
deviates as time evolves, overestimating the collapse time if C = C1 is considered, τcol = 0.81 > 0.6.
Therefore, the values of C must be different in linearized Eq. (12) from those used for C1 in Eq. (8)
in order to obtain the correct collapse times.

Let us explore now the limit Oh → 0 in Eq. (12),

ε(τ)|Oh→0 =
1 − (1/2 − ln C) ϵ̇2

i

2 ln C
τ2 + ϵ̇ i τ. (13)

In this case, if η = 1 − ε is plotted, the same solution as that obtained with Eq. (12) for Oh = 10−3 is
obtained in Fig. 3(a). Now, note that Eq. (13) gives the collapse time when ε = 1,

τcol(Oh → 0) =

−ε̇i +


ε̇2
i +

2[1 − (1/2 − ln C) ϵ̇2
i ]

ln C



ln C
1 − (1/2 − ln C) ϵ̇2

i

. (14)

In addition, if ε̇2
i ≪ 2[1 − (1/2 − ln C) ϵ̇2

i ]/ ln C, Eq. (14) yields

τcol(Oh → 0) =


2 ln C
1 − (1/2 − ln C) ϵ̇2

i

− ε̇i ln C
1 − (1/2 − ln C) ϵ̇2

i

, (15)

an expression which is valid for ε̇i ≪


2/|1 − ln C |. Using the values of C given in Table II, the
last condition requires ε̇i ≪ 1.6, 1.8, and 3.5, respectively, a condition accomplished by the exper-
imental measurements. Furthermore, since |1/2 − ln C | ϵ̇2

i ≪ 1, the following simplified expression
for the collapse time can be obtained:

τcol(Oh → 0) = √
2 ln C − ε̇i ln C. (16)

Given that ε̇i ln C ≪
√

2 ln C for the values of C and ε̇i = −η̇i provided in Table II, a collapse time
scale independent of the initial velocity and valid in the inviscid limit can be obtained

τcol(Oh → 0) = √
2 ln C. (17)

Using the values of C given in Table II, Eq. (17) yields τcol = 0.6 (Ri/a = 0.2), τcol = 0.9 (Ri/a =
0.4), and τcol = 1.29 (Ri/a = 0.6), which are in excellent agreement with the experimental asymp-
totic values showed in Figs. 2(c) and 4.

Therefore, in the following, a zero initial velocity, ε̇i = 0, will be assumed in order to obtain a
simple scaling for the collapse time valid for any value of Oh. Thus, coming back to Eq. (11),
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ε(τ) = τ

2 Oh
+

ln C
4 Oh2


exp

(
−2 Oh

ln C
τ

)
− 1


, (18)

which gives the next expression for the collapse time when ε = 1,

1 =
τcol

2 Oh
+

ln C
4 Oh2


exp

(
−2 Oh

ln C
τcol

)
− 1


. (19)

This transcendental Eq. (19) for τcol and Oh provides a scaling law for the collapse time, which
has been plotted in Fig. 4 for the three stages, Ri/a, studies here, observing a good agreement
with the experimental data for the entire range of Ohnesorge numbers. In particular, note that
Eq. (19) reaches both the inviscid (Eq. (17)) and viscous (Eq. (9)) limits. In fact, notice that the
agreement between Eq. (19) and the experiments is excellent for the closest stage to the pinch-off
(Ri/a = 0.2, Fig. 4(a)), while the data deviate from the theory for larger values of the initial radius
(Figs. 4(b) and 4(c)) since the neck becomes less slender as Ri/a increases. Consequently, the
slenderness condition of the neck assumed in the analysis is better accomplished as the neck ap-
proaches to the pinch-off. In addition, it is straightforward to extract both the viscous and inviscid
limits from Eq. (19). On the one hand, for Oh → ∞, Eq. (19) gives 1 = τcol/(2 Oh), providing
τcol(Oh → ∞) = 2 Oh, which is the same expression as that obtained in Eq. (9) for the collapse time
in the viscous limit. On the other hand, for Oh → 0, if the Taylor expansion for the exponential term
in Eq. (19) is applied, one gets 1 = τ2

col/(2 ln C), and thus τcol(Oh → 0) = √
2 ln C, as previously

obtained in Eq. (17).

IV. CONCLUSIONS

In this work, an experimental and theoretical analysis of the effect of an arbitrary liquid viscos-
ity on the bubble collapse process has been performed. In the experimental work, the quasi-static
collapse of air bubbles inside water-glycerol mixtures with different viscosity, covering a range
of 20 cP . µ . 1500 cP, has been investigated. To perform the experiments, two injection nee-
dles with different radius, a, have been used, and the temporal evolution of the neck radius,
R0(t), as well as the collapse time, tcol, has been obtained analyzing high-speed movies recorded
focusing at the length scale of the neck. Additional experiments performed in water, taken from
Ref. 8, have been included to examine the inviscid limit, covering thus a range of almost three
decades in the Ohnesorge number, Oh = µ/

√
ρσ Ri. The dimensionless collapse time, τcol = tcol/tσ,

with tσ = (ρR3
i /σ)1/2 being the capillary time based on Ri, has been analyzed for three different

collapse stages of the necking process, namely, Ri/a = 0.6, 0.4, and 0.2. The experimental results
revealed that τcol increases with Oh covering three different regimes. In the inviscid limit (Oh ≪ 1),
τcol tends to a constant that increases with Ri/a; in the transition regime (Oh ∼ O(1)), τcol in-
creases smoothly with Oh; while in the viscous limit (Oh ≫ 1), τcol increases linearly with Oh as
τcol(Oh → ∞) → 2Oh.

To describe the bubble pinch-off process, the governing equations have been applied to the
liquid field around the collapsing neck, whose shape has been approximated as a time evolving
parabola, rs(z, t) = R0(t) + r1(t) z2, with r1 the axial curvature and z the axial coordinate, being
z = 0 the position of the minimum radius, R0(t). Since the interface around the neck is slender,
that is, R0 r1 ≪ 1,8,17 evolving to a cylinder as the time approaches to the pinch-off, R0 r1 → 0,
the collapse process has been assumed to be purely radial. Thus, the cylindrical Rayleigh-Plesset
can be used to describe the process, provided that p(R0) − p(Rc), where Rc is a point far from the
neck, is the liquid pressure difference leading to the neck collapse. Therefore, the Rayleigh-Plesset
equation has been integrated to determine the temporal evolution of the neck radius, as well as
the collapse time for three different values of the initial neck radius, i.e., Ri/a = 0.6, 0.4, and 0.2.
It has been observed that the value of Rc decreases as the initial neck radius, Ri, decreases since
the slenderness condition of the neck is better accomplished. Moreover, the collapse time corre-
sponding to the viscous limit, τcol(Oh → ∞) = 2 Oh, has been inferred from Eq. (8), showing a very
good agreement with the experimental data, in particular for the case closest to the pinch-off event,
Ri/a = 0.2.
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In addition, the Rayleigh-Plesset equation has been linearized to obtain an analytical expression
for the collapse time. The linearized equation has been shown to agree with the experimental results
for a certain value of the constant C, different from C1 = Rc/Ri, since it deviates from the full
Rayleigh-Plesset equation as the pinch-off approaches. Furthermore, assuming a negligible initial
neck velocity, an analytical expression for the collapse time given by Eq. (19) and valid for any
value of Oh has been obtained. This scaling law has been shown to reproduce the experimental data
for the entire range of the Ohnesorge numbers and the different stages of the necking (i.e., different
values of Ri/a). Finally, the linearized equation provided close expressions for the inviscid and the
viscous limits given by τcol(Oh → 0) = √

2 ln C and τcol(Oh → ∞) = 2 Oh, respectively, which are
in excellent agreement with the experimental data.
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