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Abstract

This work presents an analytical model developed to describe the bubbling regime resulting from

the injection of an air sheet of thickness 2H
o

with a velocity u
a

between two water streams of thickness

H
w

�H
o

, moving at a velocity u
w

. Based on previous experimental and numerical characterizations of

this flow, the gas stream is modeled as a two-dimensional sheet divided into three di↵erent parts in the

streamwise direction: a neck that moves downstream at the water velocity, a gas ligament attached

to the injector upstream of the neck, and a forming bubble downstream of the neck, whose uniform

dimensionless half-thicknesses are ⌘
n

(⌧), ⌘
l

(⌧), ⌘
b

(⌧) respectively, and the corresponding pressures

are given by ⇧
n

(⌧), ⇧
l

(⌧), and ⇧
b

(⌧) = ⇧
n

(⌧). Lengths are made dimensionless with the semi

thickness of the air layer at the nozzle exit, H
o

, and pressures with twice the air dynamic pressure,

⇢
a

u2
a

. In a reference frame moving with the water velocity, and imposing a negative pressure caused

by the sudden expansion of the air stream at the outlet of the injector, a set of algebraic-di↵erential

equations are deduced, that can be numerically integrated to obtain the temporal evolution of the

interface positions and gas pressures, as well as of the gas flow rate through the neck. The results

provided by the model show a good agreement with previous experimental and numerical results for

a given value of the initial velocity of the collapsing neck. The latter is the only free parameter of

the model, that is shown to depend on the Weber number, We = ⇢
w

u2
w

H
o

/�, and barely depends on

the water-to-air velocity ratio, ⇤ = u
w

/u
a

, being � is the surface tension coe�cient.
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I. INTRODUCTION

Generation of gas bubbles in a liquid is one of the most important and common operations

in many industrial applications, such as aeration, distillation, or absorption, traditionally

used in material, mineral, chemical or food industries, among many others. In addition,

in the last few years, a number of emerging technologies related with the medical and the

pharmaceutical industries demand the generation of small monodisperse bubbles, justifying

the need of a deeper understanding of the bubble size control18. The simplest and most

studied method to generate bubbles consists of introducing the gas stream through an injector

which discharges inside a still liquid medium (see 2,4,11–13,16, among others). However, this

method only allows the controlled production of bubbles at frequencies much smaller, and

bubble sizes much larger, than those required by most of the modern applications mentioned

above.

One of the most extended methods to generate smaller and monodisperse bubbles is the

well-known co-flow technique, where the gas discharges inside a laminar stream of liquid

which flows in the same direction. This configuration allows to inject higher gas flow-rates

compared to the case of still liquid, while avoiding bubble coalescence and irregular bubbling

regimens. The classical co-flow configuration with a cylindrical geometry has been extensively

studied and it is used in many applications3,6,14,16,19–21, including microfluidic devices5,6,22.

Nevertheless, a planar co-flow configuration, which is the case studied in the present work,

represents an alternative method to produce controlled-size bubbles1,9,10. In this configuration,

which has been comparatively less studied than the cylindrical one, a planar air film discharges

between two parallel water sheets. As in the cylindrical case, Bolaños et al.

1 observed the

existence of two di↵erent flow regimes: a jetting regime, where the air sheet does not break

near the injector, and a bubbling regime, where a periodic and quasi-two-dimensional break-up

of the air sheet into individual bubbles is observed (see Fig. 1a). In addition, they characterized

the jetting-to-bubbling transition in the We � ⇤ parameter space where We = ⇢
w

u2
w

H
o

/� is

the Weber number and ⇤ = u
w

/u
a

the liquid-to-gas mean velocity ratio. Here, ⇢
w

is the water

density, � the surface tension coe�cient, and H
o

the half-thickness of the air stream at the

exit slit (see Fig. 1b). Unlike in the cylindrical configuration where surface tension e↵ects

contribute to destabilizing the air-water jet21, they stabilize the water-air-water sheet in the

planar case. Moreover, a local linear stability analysis revealed that the flow transition is
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related to the convective or absolute nature of the local instability in the near field.
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FIG. 1: (a) Experimental image of the bubbling regime in the planar co-flow configuration. (b)

Sketch of the planar bubbling process with the main geometrical and physical parameters.

The dynamics of the bubbling regime in the planar configuration was also investigated by

Gutiérrez-Montes et al.9 by means of experiments and numerical simulations for a particular

case with prescribed values of the dimensionless geometrical parameters, h = H
w

/H
o

and

� = H
i

/H
o

, where H
w

is the distance of the water interface to the central plane, H
i

and H
o

the inner and outer semi thicknesses of the air injector respectively being, thus, H
o

� H
i

the wall thickness of the air injector (see Fig. 1b). Based on the temporal evolution of the

bubble shape and the gas pressure extracted from the numerical simulations performed by

Gutiérrez-Montes et al.

9, the bubble formation event was described as a two-stage process:

the neck formation and the subsequent neck collapse stages. The former starts just after the

pinch-o↵ of the previous bubble, when an initial air lump of length l
i

, called intact ligament,

remains attached to the outer wall of the air nozzle (see Fig. 1). Therefore, the gas stream

su↵ers a sudden expansion from the inner thickness of the air injector, 2H
i

, to the outer one,

2H
o

, inducing a persistent negative gauge pressure inside the air stream in the neighborhood

of the injector exit. As a consequence, an incipient neck appears, that propagates downstream

at the water velocity while it accelerates inwards, causing a pressure drop across it. Thus, in

order to keep the feeding air flow rate constant, the gas pressure at the exit has to increase.

This process continues in time and during the collapse stage it becomes more violent, inducing

the inflation of the air ligament upstream from the neck and, consequently, decreasing the air

flow rate that passes through the neck.

Based on the above description, Gutiérrez-Montes et al.

9 proposed a scaling law for the
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characteristic bubbling time, given by t
c

= H
o

/u
a

p
(⇢

w

/⇢
a

)(h� 1)/[�(1� �)], which was

shown to describe fairly well the experimental and numerical bubbling times. In this scaling

law, the pressure loss associated with the planar sudden expansion is the only mechanism

taken into account to cause the pressure decrease at the injector tip. However, in the cases

where the relative wall thickness is very small, 1 � � ⌧ 1, when the e↵ect of the sudden

expansion is not dominant, alternative phenomena leading to negative gauge pressures in

the air stream determine the bubbling time, such as the Bernoulli suction through the

neck (Venturi e↵ect) or the elongation of the growing bubble, as already pointed out in9,10.

Regarding the Bernoulli suction, although it is dominant during the last instants of the

bubble collapse, it can not account for the neck formation stage, as happens in the cylindrical

configuration7,8,20. Concerning the elongation of the forming bubble, in9 it was already

elucidated that a negative pressure is only possible when the length of the forming bubble

increases with time, in contrast with the cylindrical case7. The relative importance of the

di↵erent suction mechanisms mentioned above depends on the specific geometry of the

bubble, cylindrical or planar, and on details of the injection system, such as the thickness of

the walls separating the air and water streams at the nozzle exit.

The main goal of the present work is to extend the theoretical understanding of the

planar bubbling regime. To that end, we propose a simple analytical model incorporating

the main physical mechanisms that determine the bubbling process at constant gas flow rate.

In contrast with most of the previous e↵orts to model the bubbling phenomenon, which are

based on global force balances3,4,12,15,17,23,24, our approach is similar to that developed in7 for

the cylindrical case.

The work is organized as follows. The analytical model is described in detail in Section

II, while an evaluation the model, including comparisons with experimental and numerical

results, is shown in Section III. Finally, Section IV summarizes the main conclusions.

II. MODEL DESCRIPTION

To model the bubbling process, and based on the information extracted from previous

experiments and numerical simulations, the simplified flow configuration sketched in Fig. 2
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FIG. 2: Sketch of the bubble formation process showing the main variables included in the model.

a) At the initial instant, t = 0, the length of the intact ligament is equal to the initial length of the

forming bubble. b) For a generic instant, the air-water interface has been divided into three parts:

ligament, neck, and forming bubble.

will be considered. For a generic instant t (Fig. 2b), the gas stream is modeled as a planar

sheet divided into three di↵erent parts with uniform thicknesses and pressures: a contraction

region at the neck of negligible length, with half-thickness h
n

(t) and pressure p
n

(t); a ligament

upstream from the neck, with half-thickness h
l

(t), length l
l

(t) and pressure p
l

(t); and a forming

bubble downstream from the neck, with half-thickness h
b

(t), length l
b

(t) and pressure p
b

(t).

As already mentioned, since the air interface attaches to the outer edge of the injector wall, a

negative pressure is established when the air discharges inside the bubble. Consequently, the

air-water interface can not expand in the neighborhood of the injector, and since the growing

bubble is inflated, an neck starts to form at the injector tip (Fig. 2a). As time evolves, the

neck propagates downstream while it begins to close since p
n

(t) < p0, decreasing its thickness
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h
n

(t), and generating a local pressure drop in the gas stream, as it occurs across a closing

valve. Furthermore, on the one hand, to satisfy the condition of constant feeding air flow

rate, q, the pressure inside the ligament, p
l

, has to increase to compensate for such pressure

drop. On the other hand, the neck pressure decreases due to the Venturi e↵ect caused by

the acceleration of gas stream. This overpressure causes the ligament to inflate, reducing the

gas flow through the neck, q
n

(t), injected into the forming bubble. This phenomenon is more

pronounced as the neck closes since the pressure drop is higher. Finally, the neck collapses,

forming a new bubble and starting a new event. Thus, at the beginning of the process, t = 0,

just after the detachment of the previous bubble (Fig. 2a), an intact air ligament of length

l
i

and semi-thickness h
b

(0) & H
o

remains attached to the needle. As shown in Fig. 2a, due

to the periodicity of the bubble formation phenomenon, the shape of the intact ligament

satisfies the conditions h
b

(0) = h
l

(t
b

), and l
b

(0) = l
l

(t
b

), where t
b

is the bubble generation time.

Since the propagation velocity of the neck is approximately equal to the water velocity9,

to develop the model we will adopt a reference frame moving with velocity u
w

. Consequently,

the velocity of the gas stream injected through the nozzle is (u
a

� u
w

) and the length of

the ligament can be expressed as l
l

(t) = u
w

t. In addition, we will take into account the

fact that the tip of the bubble may move slightly faster than the neck, considering that

l
b

(t) = l
i

+ (↵� 1)u
w

t, with ↵ � 1.

To develop the model we will apply the conservation equations in the water stream around

the three parts of the bubble defined above: neck, ligament and forming bubble. Notice that,

in the moving reference frame defined above, in a first approximation, the water stream has

only a transverse velocity component, v
w

. The continuity equation applied to the water stream

around the neck region provides,

@v
w

@y
= 0 ! v

w

= C(t) = ḣ
n

(t) , (1)

where the dot indicates time derivatives. Taking into account that Re
w

� 1, the transverse

momentum equation gives

⇢
w

ḧ
n

= �@p
w

@y
, (2)

with initial conditions h
n

(0) = H
o

and ḣ
n

(0) = 0, although the latter condition must be

modified to properly account for the experimental results, as explained in detail later on.

Equation (2) can be integrated across the water sheet, providing the following Rayleigh-
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Plesset-like equation that models the dynamics of the planar liquid stream during the collapse

of the neck,

⇢
w

ḧ
n

(h
w

� h
n

) = p
w

(h
n

)� p
w

(h
w

) . (3)

In the following we will consider that the water layer thickness is constant, and therefore

h
w

� h
n

= H
w

�H
o

, an that the liquid Weber number is su�ciently large to neglect surface

tension e↵ects. Consequently, p
w

(h
n

) = p
n

and p
w

(h
w

) = p0, with p0 the atmospheric pressure.

Equation (3) can be rearranged as

ḧ
n

=
p0
n

⇢
w

H
o

(h� 1)
, (4)

where h = H
w

/H
o

is the water-to-air thickness ratio, and p0
n

(t) = p
n

(t)�p0 is the manometric

pressure inside the neck. Note that, for consistency with our previous works, h is a dimen-

sionless geometrical parameter that should not be confused with any of the time dependent

bubble thicknesses, h
n

(t), h
l

(t), and h
b

(t). Here, p0
n

(t) can be expressed in terms of a dynamic

contribution, p0
nd

(t), and a constant negative pressure caused by the sudden planar expansion

of the air stream, �⇢
a

u2
a

�(1� �), as

p0
n

= p0
nd

(t)� ⇢
a

u2
a

�(1� �), (5)

where � = H
i

/H
o

is the inner-to-outer thickness ratio of the air injector.

Similarly, if the continuity and momentum equations are applied to the water stream in a

region around the ligament, the acceleration of the ligament is given by,

ḧ
l

=
p0
l

⇢
w

H
o

(h� 1)
, (6)

where the manometric pressure inside the air ligament, p0
l

, can also be expressed as a temporally

evolving contribution and a constant negative pressure,

p0
l

= p0
ld

(t)� ⇢
a

u2
a

�(1� �). (7)

Finally, for the water stream surrounding the forming bubble we can obtain the transverse

acceleration of the bubble interface,

ḧ
b

=
p0
n

⇢
w

H
o

(h� 1)
, (8)

where it has been taken into account that the pressure inside the forming bubble is equal to

the pressure in the neck, p
b

= p
n

, since the air discharges into the forming bubble through
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the neck as a submerged jet. Therefore, considering Eqs. (3) and (6), in our simple model the

accelerations of the neck and bubble interfaces must be the same,

ḧ
n

= ḧ
b

. (9)

Moreover, assuming that the gas flowing from the ligament to the neck is quasi-steady and

incompressible, the pressure inside the neck, p0
n

, can be related to that of the ligament, p0
l

,

applying the Bernoulli’s equation to an air streamline from the ligament to the neck,

p0
l

+
1

2
⇢
a

q⇤
n

2

h
l

2 = p0
n

+
1

2
⇢
a

q⇤
n

2

h
n

2 , (10)

where q⇤
n

is the gas flow rate through the neck, defined as q⇤
n

= Q
n

/(2b), being b the spanwise

length. The gas flow rate through the neck can be related with the geometry of the forming

bubble through the continuity equation, q⇤
n

= dV
b

/dt, where V
b

(t) = l
b

(t)h
b

(t) is the bubble

volume per spanwise length, and l
b

= (↵�1)u
w

t + l
i

is the instantaneous length of the bubble,

q⇤
n

= l
b

ḣ
b

+ l̇
b

h
b

= [(↵� 1)u
w

t+ l
i

] ḣ
b

+ (↵� 1)u
w

h
b

. (11)

In addition, q⇤
n

can also be expressed applying the continuity equation to the ligament,

q⇤
n

= q⇤ � dV
l

/dt = q⇤ � u
w

(ḣ
l

t+ h
l

), (12)

where q⇤ is the injected gas flow rate and V
l

(t) = l
l

(t)h
l

(t) is the volume of the ligament and

l
l

(t) = u
w

t. The continuity equation can also be applied to the total gas volume, V
t

= V
l

+V
b

,

providing q⇤ = dV
t

/dt,

q⇤ = u
w

[h
l

+ ḣ
l

t+ (↵� 1)(h
b

+ ḣ
b

t)] + ḣ
b

l
i

. (13)

Since the feeding gas flow rate q⇤ is constant, dq⇤/dt = 0, the time derivative of Eq. (13)

gives,

0 = u
w

[2 ḣ
l

+ ḧ
l

t+ (↵� 1)(2ḣ
b

+ ḧ
b

t)] + ḧ
b

l
i

. (14)

Introducing the dimensionless variables S = ⇢
a

/⇢
w

, � = H
i

/H
o

, ⇤ = u
w

/u
a

= H
i

u
w

/q⇤,

h = H
w

/H
o

, ⌘
n

(⌧) = h
n

/H
o

, ⌘
l

(⌧) = h
l

/H
o

, ⌘
b

(⌧) = h
b

/H
o

, L
i

= l
i

/H
o

, ⇧
n

(⌧) = p0
n

/(⇢
a

u2
a

),

⇧
l

(⌧) = p0
l

/(⇢
a

u2
a

) and ⌧ = t u
w

/H
o

, Eq. (4) becomes

⌘̈
n

=
S

2⇤2(h� 1)
[⇧

n

(⌧)� �
n

�(1� �)] , (15)

with the initial conditions ⌘
n

(0) = 1 and ⌘̇
n

(0) = 0, where the value of the latter will be

discussed later on. As discussed below, in Eq. (15) we have introduced a parameter �
n

that
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allows us to neglect the pressure loss due to the sudden expansion in the neck setting �
n

= 0.

Similarly, the dimensionless counterpart of Eq. (6) writes,

⌘̈
l

=
S

2⇤2(h� 1)
[⇧

l

(⌧)� �
l

�(1� �)] , (16)

with ⌘
l

(0) = 1 and ⌘̇
l

(0) = 0. The parameter �
l

plays the same role in Eq. (16) as �
n

in Eq. (15).

The parameters �
l

and �
n

have been introduced because the model for simplicity does not

contemplate spatial pressure variations inside the gas pocket, and thus is not able to consider

the pressure loss ��(1 � �) in the neck and in the ligament simultaneously. In particular,

if �
l

= �
n

= 1, the continuity equation can not be satisfied. Moreover, the dimensionless

acceleration of the interface of the forming bubble writes,

⌘̈
b

= ⌘̈
n

, (17)

with ⌘
b

(0) = ⌘
b,0 and ⌘̇

b

(0) = [�/⇤ � 1 � (↵ � 1) ⌘
b,0/Li

given by Eq. (13), where the

dimensionless intact length is equal to the dimensionless bubbling time, L
i

= ⌧
b

, provided

that the neck moves downstream at the water velocity9,10.

Equations (15)–(17) can be integrated to obtain the temporal evolution of ⌘
n

(⌧), ⌘
l

(⌧) and

⌘
b

(⌧) if expressions for the dimensionless pressures ⇧
l

(⌧) and ⇧
n

(⌧) are found. On the one

hand, using Eq. (10), ⇧
l

can be obtained as a function of ⇧
n

,

⇧
l

= ⇧
n

� ⇤2

2
q2
n

✓
1

⌘2
l

� 1

⌘2
n

◆
, (18)

where q
n

is the dimensionless gas flow rate given by the dimensionless counterpart of Eq. (11),

q
n

=
q⇤
n

u
w

H
o

= (↵� 1)(⌘
b

+ ⌘̇
b

⌧) + ⌘̇
b

L
i

. (19)

On the other hand, the dimensionless counterpart of Eq. (14) provides the closure to determine

⇧
n

,

0 = 2⌘̇
l

+ ⌘̈
l

⌧ + 2(↵� 1)⌘̇
b

+ ⌘̈
b

[(↵� 1)⌧ + L
i

]. (20)

Introducing the expressions of ⌘̈
b

and ⌘̈
l

given by Eqs. (15)–(17) in Eq. (20) one gets,

0 = 2[(↵� 1)⌘̇
b

+ ⌘̇
l

] +
S

2⇤2(h� 1)

{⌧ [⇧
l

� �
l

�(1� �)] + [(↵� 1)⌧ + L
i

][⇧
n

� �
n

�(1� �)]} .
(21)
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Finally, ⇧
n

is obtained by substituting Eq. (18) into Eq. (21),

⇧
n

=
�
n

�(1� �)[L
i

+ (↵� 1)⌧ ]� 4(h�1)⇤2

S

[⌘̇
l

+ (↵� 1)⌘̇
b

] + �
l

�(1� �)⌧+

L
i

+ ↵ ⌧

+⇤2
⌧

2 q2
n

h
1
⌘

2
l
� 1

⌘

2
n

i

L
i

+ ↵ ⌧
.

(22)

III. RESULTS

Equations (15)–(17) can be integrated together with Eqs. (18) and (22) to obtain the

temporal evolutions of ⌘
l

, ⌘
n

, ⌘
b

, ⇧
l

and ⇧
n

. To that end, for an air-water system, S =

1.2 ⇥ 10�3, and a given geometry with � = 5.27 and h = 0.52, for any pair of We and ⇤, an

initial value of L
i

must be provided to start an iterative computation of the periodic bubbling

process, that converges when the length of the intact ligament, L
i

, varies less than a given

tolerance in two consecutive iterations. A value of ↵ ' 1.1 was prescribed according to our

previous experimental and numerical results for all the cases explored in this work. Finally,

the initial thickness of the forming bubble, ⌘
b,0, was extracted from the numerical simulations.

The model converges to a final result when ⌘
b,0 = ⌘

l

(⌧
b

) and L
i

= ⌧
b

, being ⌧
b

the bubbling

time determined when the neck collapses, i.e. ⌘
n

(⌧
b

) = 0.

To validate the model, we selected the case corresponding to We = 38.26 and ⇤ = 0.145,

for which the experimental bubbling frequency given by Gutiérrez-Montes et al. 9 is f
b

= 207.4

Hz. The results obtained from the model with �
n

= 1 and �
l

= 0 and initial neck velocity

⌘̇
n

=0 are shown in Fig. 3. Notice that the final thickness of the ligament is equal to the initial

thickness of the forming bubble, ⌘
b

(0) = ⌘
b,0 = ⌘

l

(⌧
b

) = 1.84, indicating that the iterative

process has converged. It can be observed that the temporal evolutions of ⌘
n

(⌧), ⌘
l

(⌧) and

⌘
b

(⌧) provided by the model are consistent with the qualitative description of the bubbling

process explained above. Indeed, as seen in Fig. 3(a), while the neck collapses the ligament

and the forming bubble inflate with time. In addition, Fig. 3(b) shows that the pressure in

the ligament, ⇧
l

, increases, whereas the pressure inside the neck, ⇧
n

, decreases with time.

In particular, during the initial instants the pressure in the neck is ⇧
n

' �0.05, as can be

seen more clearly in the inset of Fig. 3(b), and decreases with time due to the Venturi e↵ect,

which becomes especially pronounced towards the final instants of the necking process, ⌧ > 42.

Furthermore, the flow rate of gas across the neck, q
n

, decreases with time until it becomes zero
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FIG. 3: Temporal evolution of a) the three parts of the gas dimensionless interface, ligament, neck and

bubble; b) the gas dimensionless pressure inside the ligament and the neck; and c) the dimensionless

gas flow through the neck, obtained from the model for � = 0.52, h = 5.27, We = 38.26, ⇤ = 0.145,

S = 1.2 ⇥ 10�3, ↵ = 1.1, �
n

= 1, �
l

= 0 and ⌘̇
n

(0) = 0. The inset in panel (b) is a zoom of the

pressure in the neck, ⇧
n

, showing that it is negative during the bubbling process. The inset in panel

(c) shows the values of the bubbling time provided in each iteration, ⌧
b

, indicating that model has

converged.

when the bubble pinches o↵ (see Fig. 3c). The inset in Fig. 3(c) shows how the bubbling time

provided in each iteration, ⌧
b

, quickly converges to the final value. However, in this case where

the initial velocity of the neck was taken ⌘̇
n

=0, the model converges to a initial thickness

of the forming bubble and a bubbling time ⌘
l

(⌧
b

) = ⌘
b

(0) = 1.85, ⌧
b

= 45.25, respectively,
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FIG. 4: Evolution of the dimensionless bubbling time, with the velocity ratio for di↵erent values

of the Weber number, namely (a) We = 21.52, (b) We = 26.57, (c) We = 32.15, and (d) We =

38.26. Squares represent the solutions provided by the model with ⌘̇
n

(0)=0 and the circles are the

experimental values reported by Gutiérrez-Montes et al.9

being the latter much higher than the experimental value ⌧ exp
b

= u
w

/(H
o

f
b

) ' 27 according

to Gutiérrez-Montes et al.9.

Following the same procedure, the model was integrated for di↵erent values of u
a

and u
w

,

i.e di↵erent values of the Weber number and the air-to-water velocity ratio, also considering

⌘̇
n

(0)= 0 as initial neck velocity. Figure 4 shows the dependence of the dimensionless bubbling

time with the velocity ratio for di↵erent values of the Weber number, together with the

experimental results. As can be observed, the bubbling times provided by the model follow

the same behavior as those obtained experimentally, exhibiting and increase of ⌧
b

with ⇤ with
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FIG. 5: Results obtained from the model for � = 0.54, h = 5.52, We = 38.8 and ⇤ = 0.147 with

↵ = 1.1 and ⌘̇
n

(0) = �0.015, together with the numerical results corresponding to these values. In

particular, temporal evolution of (a) dimensionless neck thickness, (b) dimensionless gas flow through

the neck, and (d) dimensionless ligament and neck pressures. Figures (e) and (f) represents a detail

of the ligament pressure and the neck pressure, respectively.

a slope close to the experimental one. Nevertheless, the exact values of ⌧
b

are overestimated

when the initial neck velocity is set to zero in the model. Consequently, instead of imposing

an initial neck velocity equal to zero, ⌘̇
n

(0) = 0, a negative velocity, ⌘̇
n

(0) < 0, to initiate the

neck collapse. For this reason, the e↵ect of the initial neck velocity on the bubbling time was

investigated next. In particular, for the case of � = 0.52, h = 5.27, We = 38.26 and ⇤ = 0.145
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we found that the bubbling frequency matched the experimental one when ⌘̇
n

= �0.019 was

imposed.
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FIG. 6: Bubbling time as a function of the velocity ratio for di↵erent values of the Weber number

given by the model (squares) with the proper value of the initial neck velocity, (a) We = 21.528

m/s, ⌘̇
n

(0) = �0.007 (b) We = 26.57, ⌘̇
n

(0) = �0.011 (c) We = 32.15, ⌘̇
n

(0) = �0.016, and (d)

We = 38.26 m/s, ⌘̇
n

(0) = �0.019. Circles are the experimental values reported by Gutiérrez-Montes

et al.9

Once the appropriate initial neck velocity is imposed, the temporal evolutions of the

interface thicknesses, gas flow rate through the neck, and pressures can be compared with

the evolutions obtained from the numerical simulations performed by Gutiérrez-Montes

et al.9. To this aim, we have selected the numerical case closet to the experimental one

discussed above, � = 0.54, h = 5.52, We = 38.8 and ⇤ = 0.147, for which an initial

14



neck velocity of ⌘̇
n

= �0.015 was found to match the bubbling time obtained numerically,

⌧
b

= 29.3. As observed in Fig. 5, the analytical model matches the numerical results when

the appropriate value of ⌘̇
n

(0) is imposed. In particular, the time evolution of the gas

flow rate crossing the neck, q
n

(⌧), given by the model closely reproduces the numerical

evolution (Fig. 5b). Moreover, it can be noted that, as in the numerical simulations, the

model yields a dramatic increase of the ligament pressure, ⇧
l

, previous to the pinch-o↵,

although it is not able to capture the subsequent pressure decrease. In fact, Fig. 5(d)

shows that, this initial increase of the ligament pressure closely follows the temporal evolu-

tion obtained numerically. Furthermore, the time evolution of the negative neck pressure,

⇧
n

, also agrees with that provided by the numerical simulations, as shown in Figs. 5(c) and (e).

A comparison between the bubbling times provided by the model and those experimen-

tally obtained by Gutiérrez-Montes et al.

9 for di↵erent values of We and ⇤ is displayed in

Fig. 6. The figure exhibits an excellent agreement between the modeled and the experi-

mental bubbling times once the appropriate initial neck velocity is imposed. Thus, the ini-

tial neck velocity needed to reproduce the experimental results has been obtained for dif-

ferent values ⇤ and We, providing a linear dependence with the Weber number given by

⌘̇
n

(0) = 8.4 ⇥ 10�3 � 7.3 ⇥ 10�4 We. This expression yields values of ⌘̇
n

(0) of the order

O(10�2) in the range of Weber numbers reported. Although we did not manage to derive an

exact model, based on physical arguments, to determine ⌘̇
n

(0), its order of magnitude can

be provided by considering the distance H
o

that the neck needs to move during the bubbling

time. Thus, using the characteristic bubbling time proposed by Gutiérrez-Montes et al.

9,

t
c

= H
o

/u
a

p
(⇢

w

/⇢
a

)(h� 1)/[�(1� �)], the neck velocity can be estimated, in dimensional

form, as ḣ
n

(0) ⇠ H
o

/t
c

⇠ u
a

p
S �(1� �)/(h� 1), where S = ⇢

a

/⇢
w

. Consequently, its di-

mensionless counterpart can be expressed as ⌘̇
n

(0) = ḣ
n

(0)/u
w

⇠ p
S �(1� �)/(h� 1)/⇤,

which provides ⌘̇
n

(0) ⇠ O(10�2) for ⇤ ⇠ O(10�1).

IV. CONCLUSIONS

A study of the dynamics of the bubbling regime in a system that consists of an air

sheet discharging between two co-flowing planar water streams under constant gas flow rate

conditions has been performed in this work. Based on previous experimental and numerical

results of this problem9,10, a simple theoretical model able to correctly describe the main
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features of the bubbling process has been developed.

The model considers a simplified flow configuration where the bubble interface is divided

into three regions, namely, a contraction zone in the neck, a ligament upstream from the

neck, and a forming bubble where the air discharges through the neck. The model is

one-dimensional, considering that the thicknesses of each region, h
n

(t), h
l

(t), h
b

(t), and

their manometric pressures, p0
n

(t), p0
l

(t), p0
b

(t) = p0
n

(t), only depend on time. The latter are

modeled as a dynamic contribution plus a constant negative pressure caused by the planar

expansion that the air finds at the outlet, p0(t) = p0
d

(t) � ⇢
a

u2
a

�(1 � �), being � = H
i

/H
o

the dimensionless injector wall-thickness. Nevertheless, the pressure loss has been taken into

account only inside the neck, since due to the simplicity of the model, it is not possible to

include it in both the neck and the ligament simultaneously. With the above assumptions

and considering a frame of reference moving at the water velocity, a set of three di↵erential

equations for the dimensionless accelerations, ⌘̈
n

, ⌘̈
l

, ⌘̈
b

= ⌘̈
n

, is obtained that, together with

a pair of algebraic equations for the pressures, ⇧
n

and ⇧
l

, can be integrated to obtain the

temporal evolution of the air-water interfaces, pressures, and the gas flow rate through the

neck, q
n

. The model proposed converges to a final solution when ⌘
b

(0) = ⌘
l

(⌧
b

), being ⌧
b

the

dimensionless bubbling time, using an iterative process.

The model has been evaluated for a particular case, using a zero initial neck velocity,

⌘̇
n

(0) = 0, as a first choice. The results show that the model is able to capture the closure of

the neck, the inflation of both the ligament and the forming bubble, as well as the decrease

of the gas flow rate through the neck during the final instants, when the pressure inside the

ligament increases, and the pressure in the neck falls due to the Venturi e↵ect. Moreover,

the bubbling time provided by the model has been obtained for di↵erent values of ⇤ and We,

exhibiting trends similar to those obtained experimentally and numerically, although with

substantially larger values of ⌧
b

. Therefore, a negative initial neck velocity, ⌘̇
n

(0) < 0, is

required to accelerate the initial closure of the neck and match the experimental bubbling

time. In fact, the temporal evolution of the interface, gas flow rate through the neck and

the neck and ligament pressures given by the model exhibit an excellent agreement with the

numerical results when a proper value of ⌘̇
n

(0) is imposed. This initial neck velocity that

matches the bubbling time has been investigated for several values of ⇤ and We, obtaining

that ⌘̇
n

(0) ⇠ O(10�2), an order of magnitude that can be estimated using the characteristic

16



break-up time proposed by Gutiérrez-Montes et al.9 for the same configuration. In particular,

within the parameter ranges investigated herein, the value of initial velocity has been found

to decrease linearly with We as ⌘̇
n

(0) = �7.3⇥ 10�4We+ 8.4⇥ 10�3.
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