2,168 research outputs found

    Conditional Involvement of CONSTITUTIVE PHOTOMORPHOGENIC1 in the Degradation of Phytochrome A.

    Get PDF
    All higher plants possess multiple phytochrome photoreceptors, with phytochrome A (phyA) being light labile and other members of the family being relatively light stable (phyB-phyE in Arabidopsis [Arabidopsis thaliana]). phyA also differs from other members of the family because it enables plants to deetiolate in far-red light-rich environments typical of dense vegetational cover. Later in development, phyA counteracts the shade avoidance syndrome. Light-induced degradation of phyA favors the establishment of a robust shade avoidance syndrome and was proposed to be important for phyA-mediated deetiolation in far-red light. phyA is ubiquitylated and targeted for proteasome-mediated degradation in response to light. Cullin1 and the ubiquitin E3 ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) have been implicated in this process. Here, we systematically analyze the requirement of cullins in this process and show that only CULLIN1 plays an important role in light-induced phyA degradation. In addition, the role of COP1 in this process is conditional and depends on the presence of metabolizable sugar in the growth medium. COP1 acts with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins. Unexpectedly, the light-induced decline of phyA levels is reduced in spa mutants irrespective of the growth medium, suggesting a COP1-independent role for SPA proteins

    EXPERIMENTAL STUDY OF THE INLET FLOW IN A NON-PREMIXED COMBUSTION CHAMBER

    Get PDF
    The evaluation, validation and development of the models used in computation fluid dynamics requires the availability of experimental data for which the boundary conditions, especially the conditions of the inlet flow, are well defined. Laser diagnostics techniques provide experimental data used in computational fluid dynamics and are a powerful tool for measurements of the mean properties and fluctuations of the turbulent flow because they are non-intrusive methods, with high repetition rate and high spatial and temporal resolution. Therefore, in the present work an experimental study of the inlet flow (inert and combusting flows) in a non-premixed combustion chamber is presented. The velocity measurements were carried out using a laser Doppler velocimeter at the entrance region of the combustion chamber. An asymmetry on the mean flow and an increase on the total velocity fluctuations with the increase of the equivalence ratio was observed. The major effect on the increase of the equivalence ratio was a presence of a coherent movement on large scales associated to the flame brush dynamics

    Evolutionary analysis of gene ages across TADs associates chromatin topology with whole-genome duplications

    Get PDF
    \ua9 2024 The AuthorsTopologically associated domains (TADs) are interaction subnetworks of chromosomal regions in 3D genomes. TAD boundaries frequently coincide with genome breaks while boundary deletion is under negative selection, suggesting that TADs may facilitate genome rearrangements and evolution. We show that genes co-localize by evolutionary age in humans and mice, resulting in TADs having different proportions of younger and older genes. We observe a major transition in the age co-localization patterns between the genes born during vertebrate whole-genome duplications (WGDs) or before and those born afterward. We also find that genes recently duplicated in primates and rodents are more frequently essential when they are located in old-enriched TADs and interact with genes that last duplicated during the WGD. Therefore, the evolutionary relevance of recent genes may increase when located in TADs with established regulatory networks. Our data suggest that TADs could play a role in organizing ancestral functions and evolutionary novelty

    Avaliação de crescimento inicial de mudas de Amoreira-preta.

    Get PDF
    bitstream/item/36301/1/comunicado-247.pd

    A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications

    Full text link
    A pair of unit clauses is called conflicting if it is of the form (x)(x), (xˉ)(\bar{x}). A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed that for each UCF CNF formula with mm clauses we can simultaneously satisfy at least \pp m clauses, where \pp =(\sqrt{5}-1)/2. We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula FF with mm clauses we can find, in polynomial time, a subformula FF' with mm' clauses such that we can simultaneously satisfy at least \pp m+(1-\pp)m'+(2-3\pp)n"/2 clauses (in FF), where n"n" is the number of variables in FF which are not in FF'. We consider two parameterized versions of MAX-SAT, where the parameter is the number of satisfied clauses above the bounds m/2m/2 and m(51)/2m(\sqrt{5}-1)/2. The former bound is tight for general formulas, and the later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31, 1999) showed that every instance of the first parameterized problem can be transformed, in polynomial time, into an equivalent one with at most 6k+36k+3 variables and 10k10k clauses. We improve this to 4k4k variables and (25+4)k(2\sqrt{5}+4)k clauses. Mahajan and Raman conjectured that the second parameterized problem is fixed-parameter tractable (FPT). We show that the problem is indeed FPT by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most (7+35)k(7+3\sqrt{5})k variables. Our results are obtained using our improvement of the Lieberherr-Specker bound above

    Nuclear phytochrome a signaling promotes phototropism in Arabidopsis.

    Get PDF
    Phototropin photoreceptors (phot1 and phot2 in Arabidopsis thaliana) enable responses to directional light cues (e.g., positive phototropism in the hypocotyl). In Arabidopsis, phot1 is essential for phototropism in response to low light, a response that is also modulated by phytochrome A (phyA), representing a classical example of photoreceptor coaction. The molecular mechanisms underlying promotion of phototropism by phyA remain unclear. Most phyA responses require nuclear accumulation of the photoreceptor, but interestingly, it has been proposed that cytosolic phyA promotes phototropism. By comparing the kinetics of phototropism in seedlings with different subcellular localizations of phyA, we show that nuclear phyA accelerates the phototropic response, whereas in the fhy1 fhl mutant, in which phyA remains in the cytosol, phototropic bending is slower than in the wild type. Consistent with this data, we find that transcription factors needed for full phyA responses are needed for normal phototropism. Moreover, we show that phyA is the primary photoreceptor promoting the expression of phototropism regulators in low light (e.g., PHYTOCHROME KINASE SUBSTRATE1 [PKS1] and ROOT PHOTO TROPISM2 [RPT2]). Although phyA remains cytosolic in fhy1 fhl, induction of PKS1 and RPT2 expression still occurs in fhy1 fhl, indicating that a low level of nuclear phyA signaling is still present in fhy1 fhl

    Phototropin-mediated perception of light direction in leaves regulates blade flattening.

    Get PDF
    One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals
    corecore