1,645 research outputs found

    The DRIFT Project: Searching for WIMPS with a Directional Detector

    Get PDF
    A low pressure time projection chamber for the detection of WIMPs is discussed. Discrimination against Compton electron background in such a device should be very good, and directional information about the recoil atoms would be obtainable. If a full 3-D reconstruction of the recoil tracks can be achieved, Monte Carlo studies indicate that a WIMP signal could be identified with high confidence from as few as 30 detected WIMP-nucleus scattering events.Comment: 5 pages, 3 figures. Presented at Dark 98, Heidelberg, July 1998, and to appear in conference proceeding

    Simulation and Design of AlGaAs/InGaAs CCDs Based on pHEMT Technology

    Full text link

    First Results from the DRIFT-IIa Dark Matter Detector

    Get PDF
    Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic

    The Supergiant Shell LMC2: II. Physical Properties of the 10^6 K Gas

    Get PDF
    LMC2 has the highest X-ray surface brightness of all know supergiant shells in the Large Magellanic Cloud (LMC). The X-ray emission peaks within the ionized filaments that define the shell boundary, but also extends beyond the southern border of LMC2 as an X-ray bright spur. ROSAT HRI images reveal the X-ray emission from LMC2 and the spur to be truly diffuse, indicating a hot plasma origin. We have obtained ROSAT PSPC and ASCA SIS spectra to study the physical conditions of the hot gas interior to LMC2 and the spur. Raymond-Smith thermal plasma model fits to the X-ray spectra, constrained by HI 21-cm emission-line measurements of the column density, show the plasma temperature of the hot gas interior of LMC2 to be kT = 0.1 - 0.7 keV and of the spur to be kT = 0.1 - 0.5 keV. We have compared the physical conditions of the hot gas interior to LMC2 with those of other supergiant shells, superbubbles, and supernova remnants (SNRs) in the LMC. We find that our derived electron densities for the hot gas inside LMC2 is higher than the value determined for the supergiant shell LMC4, comparable to the value determined for the superbubble N11, and lower than the values determined for the superbubble N44 and a number of SNRs.Comment: 29 pages, 5 figures, to be published in Ap

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 ÎŒmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    The Hot Galactic Corona and the Soft X-ray Background

    Get PDF
    I characterize the global distribution of the 3/4 keV band background with a simple model of the hot Galactic corona, plus an isotropic extragalactic background. The corona is assumed to be approximately polytropic (index = 5/3) and hydrostatic in the gravitational potential of the Galaxy. The model accounts for X-ray absorption, and is constrained iteratively with the ROSAT all-sky X-ray survey data. Regions where the data deviate significantly from the model represent predominantly the Galactic disk and individual nearby hot superbubbles. The global distribution of the background, outside these regions, is well characterized by the model; the 1 sigma relative dispersion of the data from the model is about 15%. The electron density and temperature of the corona near the Sun are about 1.1 x 10^{-3} cm^{-3} and about 1.7 x 10^6 K. The same model also explains well the 1.5 keV band background. The model prediction in the 1/4 keV band, though largely uncertain, qualitatively shows large intensity and spectral variations of the corona contribution across the sky.Comment: An invited talk at IAU Colloquium No. 166: The Local Bubble and Beyond. 10 pages (including b/w figures). Color versions of Figs. 1 and 4 are provided separately and may also be found at www.astro.nwu.edu/astro/wqd/paper/hal
    • 

    corecore