49 research outputs found

    Reaction-diffusion model for the preparation of polymer gratings by patterned ultraviolet illumination

    Get PDF
    A model is developed to describe the migration mechanism of monomers during the lithographic preparation of polymer gratings by ultraviolet polymerization. The model is based on the Flory–Huggins theory: a thermodynamic theory that deals with monomer/polymer solutions. During the photoinduced polymerization process, monomer migration is assumed to be driven by a gradient in the chemical potential rather than the concentration. If the chemical potential is used as the driving force, monomer migration is not only driven by a difference in concentration, or volume fraction, but also by other entropic effects such as monomer size and the degree of crosslinking of the polymer network, which is related to the ability of a polymer to swell. Interaction of the monomers with each other or the polymer is an additional energetic term in the chemical potential. The theoretical background of the model is explained and results of simulations are compared with those of nuclear microprobe measurements. A nuclear microprobe is used to determine the spatial monomer distribution in the polymer gratings. It is shown that two-way diffusion is expected if the monomers are both difunctional and have the same size. In some cases, if one monomer is considerably smaller than the other, it can eventually have a higher concentration in the illuminated regions, even when it has a lower reactivity. The model is used to simulate the grating formation process. This results in a calculated distribution of the monomer volume fractions as a function of position in polymer gratings. An excellent agreement with the nuclear microprobe measurements is obtained. ©2004 American Institute of Physics

    In vitro-differentiated T/natural killer-cell progenitors derived from human CD34+ cells mature in the thymus

    Full text link
    Haploidentical hematopoietic stem cell transplantation (haplo-HSCT) is a treatment option for patients with hematopoietic malignancies that is hampered by treatment-related morbidity and mortality, in part the result of opportunistic infections, a direct consequence of delayed T-cell recovery. Thymic output can be improved by facilitation of thymic immigration, known to require precommitment of CD34(+) cells. We demonstrate that Delta-like ligand-mediated predifferentiation of mobilized CD34(+) cells in vitro results in a population of thymocyte-like cells arrested at a T/natural killer (NK)-cell progenitor stage. On intrahepatic transfer to Rag2(-/-)gamma(c)(-/-) mice, these cells selectively home to the thymus and differentiate toward surface T-cell receptor-alphabeta(+) mature T cells considerably faster than animals transplanted with noncultured CD34(+) cells. This finding creates the opportunity to develop an early T-cell reconstitution therapy to combine with HSCT

    Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw

    Get PDF
    Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13C‐CH4 and 13C‐CO2, had greater summer in situ rates of respiration, methanogenesis, and surface CH4 oxidation. These patterns could be explained by greater C and N availability in the young bog, while alternative terminal electron accepting processes did not play a significant role. Field diffusive CH4 fluxes from the young bog were 4.1 times greater in the shoulder season and 1.7–7.2 times greater in winter relative to older bogs, but not during summer. Greater relative CH4 flux rates in the shoulder season and winter could be due to reduced CH4 oxidation relative to summer, magnifying the importance of differences in production. Both the permafrost plateau and collapse‐scar bogs were sources of C to the atmosphere due in large part to winter C fluxes. In collapse scar bogs, winter is a critical period when differences in thermokarst age translates to differences in surface fluxes. Plain Language Summary Permafrost thaw is occurring in Alaska which may result in a positive feedback to climate warming, due to the release of greenhouse gases such as CO2 and CH4 from soils. Here we examined greenhouse gas production along a gradient of “time since thaw,” hypothesizing that fluxes and microbial activities would be highest soon after thaw, and then decline. We observed highest rates of microbial activities, particularly methanogenesis, soon after thaw, coinciding with less decomposed organic matter and higher concentrations of dissolved carbon and nitrogen in soil, possibly of permafrost origin. However, field fluxes were higher in the young thaw site, compared to the older sites, in winter and not summer, a phenomenon that is currently not well understood

    Attenuated total reflection infrared spectroscopy for studying adsorbates on planar model catalysts : CO adsorption on silica supported Rh nanoparticles

    Get PDF
    A sensitive method is presented for studying adsorption of gaseous species on metal surfaces in vacuum by attenuated total internal reflection Fourier transform IR spectroscopy (ATR). The method is illustrated by CO adsorption expts. on silica supported Rh nanoparticles. An exptl. setup and a procedure are described in detail to obtain a sensitivity of reflectance change of .apprx.5 * 10-5 absorbance units. Here, a silicon ATR crystal with a 50 nm layer of hydroxylated silica acts as the support for the Rh nanoparticles. These particles are easily prepd. by spincoat impregnation from a RhCl3 soln. followed by H2 redn. XPS before and after redn. shows that rhodium is reduced to Rh0 and that all chlorine is removed. At. force microscope images the distribution of the particles, which are 3-4 nm in height. When the crystal is exposed to pressures up to 1 mbar of CO, a gas which is inert to the silica support, the stretch vibration of linearly adsorbed CO on the Rh nanoparticles is detected at 2023 cm-1, while no bridged CO or geminal dicarbonyl species can be distinguished. The min. detectable coverage is estd. .apprx.0.005 CO per nm2 substrate area or .apprx.5 * 10-4 ML. [on SciFinder (R)
    corecore