928 research outputs found

    Cospectral digraphs from locally line digraphs

    Get PDF
    A digraph \G=(V,E) is a line digraph when every pair of vertices u,v∈Vu,v\in V have either equal or disjoint in-neighborhoods. When this condition only applies for vertices in a given subset (with at least two elements), we say that \G is a locally line digraph. In this paper we give a new method to obtain a digraph \G' cospectral with a given locally line digraph \G with diameter DD, where the diameter D′D' of \G' is in the interval [D−1,D+1][D-1,D+1]. In particular, when the method is applied to De Bruijn or Kautz digraphs, we obtain cospectral digraphs with the same algebraic properties that characterize the formers

    Spectra and eigenspaces from regular partitions of Cayley (di)graphs of permutation groups

    Get PDF
    In this paper, we present a method to obtain regular (or equitable) partitions of Cayley (di)graphs (that is, graphs, digraphs, or mixed graphs) of permutation groups on nn letters. We prove that every partition of the number nn gives rise to a regular partition of the Cayley graph. By using representation theory, we also obtain the complete spectra and the eigenspaces of the corresponding quotient (di)graphs. More precisely, we provide a method to find all the eigenvalues and eigenvectors of such (di)graphs, based on their irreducible representations. As examples, we apply this method to the pancake graphs P(n)P(n) and to a recent known family of mixed graphs Γ(d,n,r)\Gamma(d,n,r) (having edges with and without direction). As a byproduct, the existence of perfect codes in P(n)P(n) allows us to give a lower bound for the multiplicity of its eigenvalue −1-1

    On Middle Cube Graphs

    Full text link
    We study a family of graphs related to the nn-cube. The middle cube graph of parameter k is the subgraph of Q2k−1Q_{2k-1} induced by the set of vertices whose binary representation has either k−1k-1 or kk number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors)

    The spectra of Manhattan street networks

    Get PDF
    AbstractThe multidimensional Manhattan street networks constitute a family of digraphs with many interesting properties, such as vertex symmetry (in fact they are Cayley digraphs), easy routing, Hamiltonicity, and modular structure. From the known structural properties of these digraphs, we determine their spectra, which always contain the spectra of hypercubes. In particular, in the standard (two-dimensional) case it is shown that their line digraph structure imposes the presence of the zero eigenvalue with a large multiplicity
    • …
    corecore