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Abstract

A digraph Γ = (V,E) is a line digraph when every pair of vertices u, v ∈ V
have either equal or disjoint in-neighborhoods. When this condition only applies for
vertices in a given subset (with at least two elements), we say that Γ is a locally line
digraph. In this paper we give a new method to obtain a digraph Γ′ cospectral with
a given locally line digraph Γ with diameter D, where the diameter D′ of Γ′ is in
the interval [D − 1, D + 1]. In particular, when the method is applied to De Bruijn
or Kautz digraphs, we obtain cospectral digraphs with the same algebraic properties
that characterize the formers.

Mathematics Subject Classifications: 05C20, 05C50.

Keywords: Digraph, adjacency matrix, spectrum, cospectral digraph, diameter, De Bruijn
digraph, Kautz digraph.

1 Preliminaries

In this section we recall some basic terminology and simple results concerning digraphs
and their spectra. For the concepts and/or results not presented here, we refer the reader
to some of the basic textbooks and papers on the subject; for instance, Chartrand and
Lesniak [1] and Diestel [3].

Through this paper, Γ = (V,E) denotes a digraph, with set of vertices V = V (Γ) and set
of arcs (or directed edges) E = E(Γ), that is strongly connected (namely, every vertex
is connected to any other vertex by traversing the arcs in their corresponding direction).
An arc from vertex u to vertex v is denoted by either (u, v) or u → v. As usual, we call
loop an arc from a vertex to itself, u → u, and digon to two opposite arcs joining a pair
of vertices, u � v. The set of vertices adjacent to and from v ∈ V is denoted by Γ−(v)
and Γ+(v), respectively. Such vertices are referred to as in-neighbors and out-neighbors
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Figure 1: Scheme of the sets of Theorem 2.1. The arcs that change from Γ to Γ′ are
represented with a thick line.

of v, respectively. Moreover, δ−(v) = |Γ−(v)| and δ+(v) = |Γ+(v)| are the in-degree and
out-degree of vertex v, and Γ is d-regular when δ+(v) = δ−(v) = d for any v ∈ V . Similarly,
given U ⊂ V , Γ−(U) and Γ+(U) represent the sets of vertices adjacent to and from (the
vertices of) U . Given two vertex subsets X,Y ⊂ V , the subset of arcs from X to Y is
denoted by e(X,Y ).

In the line digraph LΓ of a digraph Γ, each vertex represents an arc of Γ, V (LΓ) = {uv :
(u, v) ∈ E(G)}, and a vertex uv is adjacent to a vertex wz when v = w, that is, when
in Γ the arc (u, v) is adjacent to the arc (w, z): u → v(= w) → z. By the Heuchenne’s
condition [9], a digraph Γ is a line digraph if and only if, for every pair of vertices u, v,
either Γ+(u) = Γ+(v) or Γ+(u)∩Γ+(v) = ∅. Since the line digraph of the converse digraph
Γ (obtained from Γ by reversing the directions of all the arcs) equals the converse of the line
digraph, LΓ = LΓ, the above condition can be restated in terms of the in-neighborhoods
Γ−(u) and Γ−(v). In particular, we say that a digraph is a (U-)locally line digraph if
there is a vertex subset U with at least two elements such that Γ−(u) = Γ−(v) for every
u, v ∈ U .

In the case of graphs instead of digraphs, the Godsil-McKay switching given in [8] is a
technique to obtain cospectral graphs.

2 Main result

The following result describes the basic transformation of a digraph Γ into another digraph
Γ′ modifying slightly the walk properties of the former (see Figure 1).

Theorem 2.1. Let Γ = (V,E) be a digraph with diameter D ≥ 2. Consider a subset of
vertices X = {x1, . . . , xr} ⊂ V , r ≥ 2, such that the sets of the in-neighbors of every xi
are the same for every xi, say, Y = Γ−(xi) for i = 1, . . . , r. Let Z = Γ+(X). Let Γ′ be
the modified digraph obtained from Γ by changing the set of arcs e(X,Z) by another set
of arcs e′(X,Z) in such a way that the two following conditions are satisfied:
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(i) The loops remain unchanged, that is, with e′(Y,X) being the set of arcs from Y to
X in Γ′, we must have e′(Y,X) ∩ e′(X,Z) = e(Y,X) ∩ e(X,Z).

(ii) For the arcs that are not loops, every vertex of X has some out-going arcs to a vertex
of Z, and every vertex of Z gets some in-going arcs from a vertex of X.

Assume that there is a walk of length ` ≥ 2 from u to v (u, v ∈ V ) in Γ.

(a) If u 6∈ X, then there is also a walk of length ` from u to v in Γ′.

(b) If u ∈ X, then there is a walk of length at most `+ 1 from u to v in Γ′.

Proof. (a) Let u0(= u), u1, . . . , u`−1(= v) be an `-walk from u to v in Γ. We distinguish
two cases:

1. If ui /∈ X for every i = 1, . . . , `− 2, the result is trivial as the walk in Γ′ is the same
as that in Γ.

2. If ui ∈ X for some i = 1, . . . , ` − 2, then from the hypothesis on X we must have
ui−1 ∈ Y and X∩Γ+(ui−1) = X. Moreover, by (ii), in Γ′ there is a vertex u′i ∈ X ad-
jacent to ui+1. Thus, the required `-walk in Γ′ is just u0, . . . , ui−1, u

′
i, ui+1, . . . , u`−1.

(b) If u ∈ X, the result is a simple consequence of (a). Indeed, by (ii) there is a vertex
u′ ∈ Z \ X adjacent from u (otherwise, Γ would not be strongly connected). Then, it
suffices to consider the walk u, u′, . . . , v. This completes the proof.

If we consider shortest walks, the following consequence is straightforward.

Corollary 2.2. If Γ is a digraph with diameter D, the modified digraph Γ′ (in the sense
of Theorem 2.1) has diameter D′ satisfying D − 1 ≤ D′ ≤ D + 1.

Note that the case D′ = D − 1 could happen when, in Γ, all vertices not in X have
eccentricity D − 1 and, in Γ′ all vertices in X result with the same eccentricity D − 1.

Examples of the case when the diameter remains unchanged, D′ = D, are provided by the
modified De Bruijn digraphs (see Section 4).

3 Cospectral digraphs

First notice that, because of the condition Y = Γ−(xi), i = 1, . . . , r, the spectrum of
Γ contains the eigenvalue 0 with multiplicity m(0) ≥ r − 1. Indeed, suppose that its
adjacency matrix A is indexed in such a way that the first r rows correspond to the vertices
of X. Then, the r − 1 (column) vectors (1,−1, 0, 0, 0, . . . , 0), (0, 1,−1, 0, 0, . . . , 0),. . . ,
(0, . . . , 0, 1,−1, 0, . . . , 0) are clearly linearly independent, and they are also eigenvectors
with eigenvalue 0. For more details, see Fiol and Mitjana [5].
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Another interesting consequence of Theorem 2.1 is the following relationship between the
adjacency matrices of Γ and Γ′, in the particular case when the in-degrees of the vertices
of Z are preserved.

Proposition 3.1. Assume that in the modified digraph Γ′ from Γ, every vertex of Z gets
the same number of in-going arcs as in Γ. That is, Γ′−(v) = Γ−(v) for every v ∈ Z. Let
A = (auv) and A′ = (a′uv) be the adjacency matrices of Γ and Γ′, respectively. Then, for
any polynomial p ∈ R[x] without constant term, say, p(x) = xq(x), with deg q = deg p− 1,
we have

p(A′) = A′q(A). (1)

Proof. We only need to prove that A′A = A′A′. Since the only modified arcs are those
adjacent from the vertices of X, we have

(A′A)uv =
∑
x∈X

a′uxaxv +
∑
x/∈X

a′uxaxv = |X ∩ Γ−(v)|+
∑
x/∈X

a′uxaxv

= |X ∩ Γ′−(v)|+
∑
x/∈X

a′uxaxv =
∑
x∈X

a′uxa
′
xv +

∑
x/∈X

a′uxa
′
xv = (A′A′)uv,

where we used that every vertex of Z in Γ′ gets the same number of in-going arcs as in
Γ.

Proposition 3.2. Within the conditions of Proposition 3.1, the digraphs Γ and Γ′ are
cospectral.

Proof. First, note that Eq. (1) is equivalent to state that, for any polynomial q ∈ R[x],

A′q(A′) = A′q(A).

In particular, if q(x) = φΓ(x) is the characteristic polynomial of Γ, the above equation
gives

A′φΓ(A′) = A′φΓ(A) = 0,

so that the polynomial xφΓ(x) is a multiple of the characteristic polynomial φΓ′(x) of Γ′,
say, xφΓ(x) = r(x)φΓ′(x) with deg r = 1. Analogously, since Γ can be seen as a modified
digraph of Γ′ (G satisfies Proposition 3.1), we get xφΓ′(x) = s(x)φΓ(x) with deg s = 1.
Then, we deduce that φΓ(x) and φΓ′(x) can only differ by a constant, but, as they are
both monic polynomials, φΓ(x) = φΓ′(x) and sp Γ = sp Γ′, as claimed.

Given a digraph Γ, its converse digraph Γ has the same vertex set as Γ, but all the
directions of the arcs are reversed. Then, the walks of Γ and Γ are in correspondence, and,
as the adjacency matrix of Γ is the transpose of that of Γ, both digraphs are cospectral.
These facts leads us to the symmetric-like result of Theorem 2.1 and Proposition 3.2:
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Corollary 3.3. Let Γ = (V,E) be a digraph with diameter D ≥ 2. Consider a subset of
vertices X ′ = {x1, . . . , xr} ⊂ V , r ≥ 2, such that the sets of the out-neighbors of every xi
are the same for every xi, say, Y ′ = Γ+(xi) for i = 1, . . . , r. Let Z ′ = Γ−(X ′). Let Γ′ be
the modified digraph obtained from Γ by changing the set of arcs e(Z ′, X ′) by another set
of arcs e′(Z ′, X ′) in such a way that the two following conditions are satisfied:

(i) The loops remain unchanged, that is, with e′(X ′, Y ′) being the set of arcs from X ′

to Y ′ in Γ′, we must have e′(X ′, Y ′) ∩ e′(Z ′, X ′) = e(X ′, Y ′) ∩ e(Z ′, X ′).

(ii) For the arcs that are not loops, every vertex of X ′ has some in-going arcs from a
vertex of Z ′, and every vertex of Z ′ gets some out-going arcs to a vertex of X ′.

Then, the following hold.

(a) The diameter D′ of Γ′ lies between D − 1 and D + 1.

(b) If, in the modified digraph Γ′, every vertex of Z gets the same out-going arcs as in
Γ, then Γ′ and Γ are cospectral.

Proof. Modify the converse digraph of Γ according to Theorem 2.1 and Proposition 3.2,
and then take the converse digraph of the result.

4 The modified De Bruijn digraphs

The results of the preceding section can be used to obtain digraphs with specific distance-
related or walk properties. Let us begin with the case of the so-called equi-reachable
digraphs, of which the well-known De Bruijn digraphs are a particular example.

Let Γ = (V,E) be a digraph with diameter D, and suppose that, for every pair of vertices
u, v ∈ V , there is a walk of constant length m(≥ D) from u to v. If ` is the smallest of
such an m, we say that Γ is `-reachable. Some times the term equi-reachable is used for
digraphs that are `-reachable (for some `), that is, for digraphs with walks of equal length
between vertices.

If Γ is `-reachable and has maximum out-degree d, then its order is at most N = d`, since
this is the maximum number of different walks of length ` from a given vertex. To attain
this bound there should be just one walk of length ` between any two vertices. Then, the
adjacency matrix A of Γ must verify the matrix equation

A` = J , (2)

and, therefore, Γ must be d-regular, see Hoffman and McAndrew [10]. Note also that these
digraphs must be geodesic (that is, with just one shortest path between any two vertices).

The `-reachable digraphs with d` vertices were studied by Mendelsohn in [12] as UPP
digraphs (digraphs with the unique path property of order `), and by Conway and Guy [2],
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Figure 2: The De Bruijn digraphs B(2, 1), B(2, 2), B(2, 3), and B(2, 4).

unaware of the work of Mendelsohn, as tight precisely `-steps digraphs, using them to
construct large transitive digraphs of given diameter. Equi-reachable digraphs were also
studied by Fiol, Alegre, Yebra, and Fàbrega [4].

Among the UPP digraphs, there are the well-known De Bruijn (or Good-De Bruijn) di-
graphs B(d, `), whose set of vertices consists of all words of length ` from an alphabet of d
symbols, say Zd = {0, 1, . . . , d−1}, and a vertex x is adjacent to a vertex y if the last `−1
symbols of x coincide with the first `−1 symbols of y. The De Bruijn digraphs B(2, `) for
` = 1, 2, 3, 4 are shown in Figure 2. In general, it is well-known that the digraph B(d, `)
is d-regular with diameter D = `, and it is the line digraph of B(d, ` − 1). Moreover, its
adjacency matrix satisfies Eq. (2), which, as said before, it is the algebraic condition for
being `-reachable. For more details, see Fiol, Yebra and Alegre [6, 7].

The De Bruijn digraphs are not the only UPP digraphs. For instance, for d = 3 and ` = 2
Mendelsohn presented in [12] five other nonisomorphic such digraphs that can be seen as
models of groupoids. More generally, UPP digraphs can be seen as models of a universal
algebra, for more information see Mendelsohn [11].

To obtain a UPP digraph by modifying B(d, `) according to Proposition 3.1, we need the
modified digraph B′(d, `) to have the same diameter `, as shown in the following result.

Proposition 4.1. Let Γ = B(d, `). For some fixed values xi ∈ Zd, i = 1, 2, . . . , ` − 1,
not all of them being equal (to avoid loops), consider the vertex set X = {x1x2 . . . x`−1k :
k ∈ Zd}. Let αj, for j ∈ Zd, be d-permutations of 0, 1, . . . , d− 1. Let Γ′ = B′(d, `) be the
modified digraph obtained by changing the out-going arcs of X in such a way that every
vertex x1x2 . . . x`−1k ∈ X is adjacent to the d vertices

x2x3 . . . x`−1αj(k)j, k = 0, 1, . . . , d− 1. (3)

Then Γ′ is a d-regular digraph with the same diameter D′ = ` as Γ = B(d, `), and it is
`-reachable.

Proof. First, we only need to prove in-regularity (that is, constant in-degree) for every
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Figure 3: The modified De Bruijn digraph B′(2, 3).

vertex of Z = Γ+(X) given by (3). But such a vertex is adjacent from the vertices

hx2 . . . x`−1αj(k), h 6= x1, and x1x2 . . . x`−1k.

Moreover, according to Theorem 2.1, it suffices to show that, from each vertex u =
x1x2 . . . x`−1k ∈ X, there is an `-walk from u to every other vertex v = z1z2 . . . z`−1z`
in Γ′. To this end, we consider the following walk u0(= u), u1, . . . , u`−1, u` with

u0 = x1x2 . . . x`−1k,

u1 = x2x3x4 . . . x`−1αy1(k)y1,

u2 = x3x4 . . . x`−1αy1(k)αy2(y1)y2,

u3 = x4 . . . x`−1αy1(k)αy2(y1)αy3(y2)y3,

...

u` = αy2(y1)αy3(y2) . . . αy`(y`−1)y`,

where, if ui 6∈ X for some i, it is assumed that in ui+1 all the αj ’s are the identity (since
there are no changes in the out-going arcs of the former), and

y` = z`, y`−1 = α−1
y`

(z`−1), . . . , y2 = α−1
y3 (z2), y1 = α−1

y2 (z1),

so giving u` = z1z2 . . . z`−1z` = v, as desired.

By way of example, consider the modified De Bruijn digraph of Figure 3, obtained from
B(2, 3) by considering the set X = {100, 101} (so that Y = {010, 110}), and removing
the arcs 100 → 001 and 101 → 011 to set 100 → 011 and 101 → 001. (This corresponds
to take the permutations α0 = ι (the identity) and α1 = (01)). Such a digraph was first
shown by Fiol, Alegre, Yebra, and Fàbrega in [4].

The adjacency matrices of B(2, 3) and B′(2, 3), with the modified 1’s in bold, are, respec-
tively,
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Figure 4: (a) The “left and right modifications” of B∗(2, 3); (b) The doubly modified De
Bruijn digraph B∗(2, 3).

A =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


and A′ =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


.

According to Proposition 3.2, both digraphs are cospectral with

spB(2, 3) = spB′(2, 3) = {07, 21},

where the superscripts denote the (algebraic) multiplicites of the eigenvalues.

Observe that B(2, 3) and B′(2, 3), shown in Figs. 2 and 3 respectively, are not isomorphic
since, for instance, the former has two cycles (closed walks without repeated vertices) of
length 5:

000→ 001→ 011→ 110→ 100→ 000, and 111→ 110→ 100→ 001→ 011→ 111,

whereas the latter has three:

000→ 001→ 011→ 110→ 100→ 000, 111→ 110→ 101→ 001→ 011→ 111,

and 010→ 100→ 011→ 110→ 101→ 010.

Of course, the above situation is not the general case. Many digraphs obtained by using
the modifications described in Proposition 4.1 are cospectral, but also isomorphic to the
original digraph. So, an interesting open problem would be to determine the conditions on
the d-permutations αj , for j = 0, . . . , d− 1, to obtain nonisomorphic cospectral digraphs.
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Figure 5: The Kautz digraphs K(2, 1), K(2, 2), K(2, 3), and K(2, 4).

In fact, a computer exploration shows that the only nonisomorphic 3-reachable 2-regular
digraphs are B(2, 3), B′(2, 3), and B′′(2, 3) = B′(2, 3), the converse digraph of B′(2, 3),
which can be also obtained by using our method. Indeed, it suffices to take B(2, 3) and
apply Corollary 3.3 with X ′ = X = {100, 101} (so that Y ′ = Y {010, 110}), and change
the same arcs as before, but now with opposite directions.

Another possible interesting perturbation is to apply a double modification: The one
proposed in Theorem 2.1 (or Proposition 3.2) with the sets Y , X, and Z(= Γ+(X)); and
that of Corollary 3.3 with Z ′ = Γ−(X ′), X ′(= Y ), and Y ′(= X). For example, in the case
of B(2, 3), these modifications are depicted in Fig. 4(a), where the dashed arcs are changed
to the bold ones, and the obtained digraph is shown in Fig. 4(b). Notice that, in this
case, we are not longer under the conditions of Proposition 4.1 and, hence, the resulting
digraph B∗(2, 3) with adjacency matrix A, although still cospectral with B(2, 3), is not
a UPP digraph, that is, A3 6= J . (But, in fact, we have A4 = 2J , which indicates the
existence of exactly 2 walks of length 4 between any two vertices.)

5 The modified Kautz digraphs

The Kautz digraph K(d, `) is defined as the De Bruin digraph B(d, `) but now the consec-
utive symbols xi and xi+1, taken from the alphabet {0, 1, . . . , d}, must be different. The
first four Kautz digraphs K(2, `), for ` = 1, 2, 3, 4, are represented in Figure 5. Again, it
is well-known that any of these digraphs is the line digraph of the previous one (see Fiol,
Yebra, and Alegre [7]). The adjacency matrix A of the Kautz digraph K(d, `) satisfies the
matrix equation

A` + A`−1 = J , (4)

so that between every pair of vertices u, v there is exactly one walk of length ` or `− 1.

Contrarily to the De Bruijn digraphs, some experimental results seems to show that all the
modified Kautz digraphs K ′(d, `) have diameter D′ = `+ 1. For example, Figure 6 shows



10

210210

012 101

010

102
020202

021

212

121

201120

012 101

010

102
020202

021

212

121

201120

Figure 6: The modified Kautz digraphs K ′(2, 3) and K ′′(2, 3).

two modified Kautz digraphs, K ′(2, 3) and K ′′(2, 3), where, in both cases, X = {101, 102}
(so that Y = {010, 210}). Then, K ′(2, 3) is obtained by removing the arcs 101→ 012 and
102 → 020 to set the new arcs 101 → 020 and 102 → 012; whereas K ′′(2, 3) is obtained
by changing 101→ 012 and 102→ 021 to get 101→ 021 and 102→ 012.

In concordance with Proposition 3.2, all these digraph are cospectral with

spK(2, 3) = spK ′(2, 3) = spK ′′(2, 3) = {−12, 09, 21}.
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