4,147 research outputs found

    Fuzzy image segmentation combining ring and elliptic shaped clustering algorithms

    Get PDF
    Results from any existing clustering algorithm that are used for segmentation are highly sensitive to features that limit their generalization. Shape is one important attribute of an object. The detection and separation of an object using fuzzy ring-shaped clustering (FKR) and elliptic ring-shaped clustering (FKE) already exists in the literature. Not all real objects however, are ring or elliptical in shape, so to address these issues, this paper introduces a new shape-based algorithm, called fuzzy image segmentation combining ring and elliptic shaped clustering algorithms (FCRE) by merging the initial segmented results produced by FKR and FKE. The distribution of unclassified pixels is performed by connectedness and fuzzy c-means (FCM) using a combination of pixel intensity and normalized pixel location. Both qualitative and quantitative analysis of the results for different varieties of images proves the superiority of the proposed FCRE algorithm compared with both FKR and FKE

    Fuzzy image segmentation using shape information

    Get PDF
    Results of any clustering algorithm are highly sensitive to features that limit their generalization and hence provide a strong motivation to integrate shape information into the algorithm. Existing fuzzy shape-based clustering algorithms consider only circular and elliptical shape information and consequently do not segment well, arbitrary shaped objects. To address this issue, this paper introduces a new shape-based algorithm, called fuzzy image segmentation using shape information (FISS) by incorporating general shape information. Both qualitative and quantitative analysis proves the superiority of the new FISS algorithm compared to other well-established shape-based fuzzy clustering algorithms, including Gustafson-Kessel, ring-shaped, circular shell, c-ellipsoidal shells and elliptic ring-shaped clusters

    Passive source localization using power spectral analysis and decision fusion in wireless distributed sensor networks

    Get PDF
    Source localization is a challenging issue for multisensor multitarget detection, tracking and estimation problems in wireless distributed sensor networks. In this paper, a novel source localization method, called passive source localization using power spectral analysis and decision fusion in wireless distributed sensor networks is presented. This includes an energy decay model for acoustic signals. The new method is computationally efficient and requires less bandwidth compared with current methods by making localization decisions at individual nodes and performing decision fusion at the manager node. This eliminates the requirement of sophisticated synchronization. A simulation of the proposed method is performed using different numbers of sources and sensor nodes. Simulation results confirmed the improved performance of this method under ideal and noisy conditions
    • …
    corecore