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Abstract 
 
The image segmentation performance of any clustering algorithm is sensitive to the features used and the types of object in 
an image, both of which compromise the overall generality of the algorithm. This paper proposes a novel fuzzy image 
segmentation considering surface characteristics and feature set selection strategy (FISFS) algorithm which addresses these 
issues. Features that are exploited when the initially segmented results from a clustering algorithm are subsequently merged 
include connectedness, object surface characteristics and the arbitrariness of the fuzzy c-means (FCM) algorithm for pixel 
location. A perceptual threshold is also integrated within the region merging strategy. Qualitative and quantitative results are 
presented, together with a full time-complexity analysis, to confirm the superior performance of FISFS compared with FCM, 
possibilistic c-means (PCM), and suppressed FCM (SFCM) clustering algorithms, for a wide range of disparate images.  
 
Keywords – Fuzzy image segmentation, Surface characteristics, Connectedness, Intensity, Location.  

1.  Introduction 
Object-based image segmentation is an intractable task because of the myriad number of objects in an image, and the 
enormous variations between them, which means segmenting every object using one particular feature set is not feasible. 
Most images possess some ambiguous information and hence any segmentation produces fuzzy regions. In such 
circumstances, fuzzy image segmentation performs better than traditional “crisp” techniques. Fuzzy image segmentation 
algorithms are broadly classified into six classes: (i) fuzzy geometry-based, (ii) fuzzy thresholding-based, (iii) fuzzy integral-
based, (iv) fuzzy rule-based, (v) soft computing-based, and (vi) fuzzy clustering, which is the most popular and widely used 
[1]. In general, object-based segmentation [2]-[14] uses different feature types, such as brightness (gray scale pixel intensity) 
and geometric information (pixel location) to measure the similarity. The effectiveness of these algorithms however is highly 
dependent on the types of features used and a priori information concerning the objects in an image. This domain specific 
information about which feature type produces the best results for which image, has a considerable impact on an algorithm’s 
generalisation capability [3]. For instance, clustering algorithms such as FCM [3], PCM [4] and SFCM [15] cannot separate 
image regions that have similar pixel intensities by considering only their pixel intensity. They may however, be able to 
segment by exploiting information on either the location of pixels or using a combination of pixel intensity and location 
(CIL)1. Likewise, clustering cannot always segment adjacent and enclosed regions with different pixel intensities by only 
considering PL, but may well do so by using PI. It has been found [16] that in many cases, clustering algorithms that 
combined both image features (PI and PL) do not provide the expected results for objects having similar PI and similar 
surface variations (SSV). This provided the foundation for the new segmentation strategy proposed in this paper, of merging 
the individual initially segmented results generated by any clustering algorithm and judiciously selecting the most appropriate 
feature sets. 

                                                 
1 Throughout this paper PL, PI and CIL refer respectively to pixel location, pixel intensity and a combination of pixel intensity and normalized pixel 
location. 



The new fuzzy image segmentation considering surface characteristics and feature set selection strategy (FISFS) algorithm 
incorporates a number of features; (i) the topological property of connectedness; (ii) identification of objects having SSV and 
dissimilar surface variations (DSV); (iii) human visual perception; (iv) arbitrariness of FCM for PL; and (v) automatic 
selection of feature sets for initial segmentation. Embedded within FISFS are two constituent algorithms, which handle the 
merging of individually segmented results (MISR) and the separation of objects having similar and dissimilar surface 
variations (SOSDS). A full time-complexity analysis for the FISFS algorithm is presented and results analytically compared 
with FCM, PCM and SFCM for all three cases, PI, PL and CIL. The numerical performance is assessed using the objective 
segmentation evaluation method, discrepancy based on the number of misclassified pixels [1].  
The paper is structured as follows: In Section 2, a proof of the arbitrariness of FCM for PL is presented, while the 
identification of objects having SSV is detailed in Section 3. Section 4 discusses the region merging strategy used in the 
MISR algorithm, with the new FISFS and SOSDS algorithms described in Section 5. A comprehensive time-complexity 
analysis of the FISFS algorithm is presented in Section 6, while its segmentation performance is fully analysed and compared 
in Section 7. Section 8 provides some concluding remarks.   

2. Arbitrariness of FCM For Pixel Location 
FCM using PL arbitrarily divides objects irrespective of their size and surface variations, as proven by the following lemma.  

Lemma 1: The decision boundary between two segmented clusters generated by FCM using PL is orthogonal to a line 
connecting the two respective cluster centres and passes through its midpoint.  

Proof: In  
Figure 1, if 1C  and 2C  are two cluster centres produced by FCM using PL and C is the midpoint, then it needs to be proved 
that the line AE ⊥ C1C2  passing through C is a decision boundary.  
Hypothesis:  AE is the decision boundary between 1C and 2C  for n data points where 1n and 2n  data points are already 
classified into clusters 1C and 2C  respectively. 
Basis Step: Assume an arbitrary data point G, so A is the intersection point of extended C1G and AE. Since C1C=CC2 and 
AC ⊥ C1C2, Δ AC1C Δ≅ AC2C, then AC1=AC2 and ∠ AC1C=∠ AC2C. From  
Figure 1, ∠ AC2C>∠ C1C2G i.e. ∠ AC1C2=∠ GC1C2>∠ C1C2G, which implies that C2G>C1G, so G is closer to C1 than C2. 
As FCM minimizes intra-cluster distance and maximizes inter-cluster distance, G will be classified into 1C .     
  

 

 

 

 

 

 

Figure 1: Decision boundary for two clusters. 

If G is on the opposite side of AE, a similar argument confirms it will be classified into 2C , so in conclusion, in order to both 
minimize intra- and maximize inter-cluster distances, any data point on the left of AE belongs to cluster 1C  and vice versa, 
i.e., AE creates a data dichotomy and is a decision boundary.  
 
Induction Step: Assume the hypothesis that AE is the decision boundary between 1C  and 2C  for n  data points is true. 
Applying the same reasoning as in the Basis Step, AE will classify new data into the appropriate clusters, thus implying it is a 
decision boundary for ( )1+n  data points and by induction also for an arbitrary number of data points.   
While the above proof is only for ℜ =2 clusters, the theory is generic and extendible to an arbitrary number of clusters. There 
will then be decision boundaries between each pair of clusters as shown in Figure 2 for the case of ℜ =3, with 1C , 2C , and 

3C  being the cluster centres, and 1L , 2L and 3L  the corresponding decision boundaries. For classification, a datum and its 
corresponding cluster centre must be the same side of each decision boundary (see Figure 2).  
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Figure 2 Decision boundaries for multiple clusters. 

The maximum possible number of boundaries for ℜ  clusters is ( ) ( )2
2 2

1 ℜ=−ℜℜ=ℜ OC , so the decision boundary increases 

by ( )2ℜO  which means the arbitrariness of FCM using PL commensurately increases. 

3. Identification of Similar Surfaces 
The flowchart in Figure 3 outlines the basic steps of the FISFS algorithm. The first and most challenging step is to determine 
between objects in an image having similar and dissimilar surfaces. Before examining how this can be achieved, it is 
important to note that there are two possible scenarios whereby surfaces are considered to be similar with respect to 
brightness, namely: (i) when they have similar PI (see example in Figure 4(a)) and (ii) possess SSV (Figure 4(b)). For clarity, 
the background of both images in Figure 4 has been removed leaving only the foreground objects. The two objects in Figure 
4(a) have also been artificially modified so they exhibit very similar PI. It has been proven previously [17] that in most cases 
where FCM using CIL was unsuccessful in segmenting objects, FCM using PI also failed. The reason for this is that FCM 
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 Figure 3 : Flowchart of the FISFS algorithm. 
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using CIL makes a decision by considering only PI, with the implication that only PL should be used to provide improved 
segmentation results. The potential of FCM using CIL as a meaningful feature is now explored by separately considering the 
above two scenarios. In (i), both objects in Figure 4(a) have similar PI, so FCM using CIL generates cluster centre 
coordinates for intensity which are very close. This means PL will dominate PI and the segmented results produced by CIL 
are analogous to those of PL (Lemma 2). In case (ii), the objects in Figure 4(b) have SSV so FCM using CIL generates 
cluster centres for location that are very close, because of the distribution of bright and dark pixels over most of the surface of  
 

 
(b)  

(c) 
Figure 4:  (a) Cow image;  (c) Tiger image. 

 
both objects. PI will therefore dominate PL and yield segmentation results for CIL and PI (Lemma 3) which are very similar. 

Lemma 2: If the cluster centre coordinates for PI produced by FCM using CIL are very close to each other, the segmented 
results will be very similar to that produced by FCM using only PL.  

Proof:  The basis of a fuzzy clustering algorithm such as FCM is to minimize the intra and maximize the inter-cluster 
distances by iteratively minimizing an objective function. 
Let 1C  and 2C  be two cluster centres, jX  a datum and 1d  and 2d  the distances of jX  from 1C  and 2C  respectively, which 
for FCM using CIL are defined as: 
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where XL , YL  and P  represent the X-dimension, Y-dimension and PI of a feature respectively. The difference ( )21 dd −  is 
used as a measure of the degree of belonging of jX  to a particular cluster. For example, if ( )21 dd − >0, jX  is classified into 
cluster 2C , otherwise it is classified into 1C . Since the cluster centres for PI are very close to each other i.e. PP CC 21 → , from (1) 
and (2) ( )2
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As (3) is independent of PI, jX  is classified using only PL and so objects that have similar PI will be segmented using PL 
despite CIL being used.   
In the example in Figure 4(a), both objects have similar PI, and the segmentation results produced by using CIL (Figure 5(a)) 
are the same as those for FCM using PL (Figure 5(b)).  
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       (b) 

Figure 5:  (a) FCM using CIL; (b) FCM using PL. 

 Lemma 3: If the cluster centre coordinates for PL produced by FCM using CIL are very close to each other, the segmented 
results are very similar to those produced by FCM using only PI. 
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 Proof: As detailed in Lemma 2, if the cluster centres are very close to each other for PL, i.e., LL CC 21 → , from (1) and (2), then 
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1 dd −  is independent of PL, i.e. both XL  and YL , jX  will be classified by considering only PI. Thus for objects with 
SSV, FCM using CIL produces the same results as using PI.   
For the Figure 4(b) example, FCM using CIL produces the segmented regions shown in Figure 6(b), which are exactly the 
same as those for FCM using PI (Figure 6(a)). In this case however, the objects could not be separated at all because of their 
SSV characteristics. 

 
(a) 

 
(b) 

 Figure 6: (a) FCM using PI (b) FCM using CIL.  
Note in both cases the objects cannot be separated.  

 
Lemma 3 confirms that when objects have SSV with a repetitious pattern of bright and dark pixels, FCM using CIL is unable 
to segment them. This provides the basis to apply FCM using CIL to determine the type of surface variations of an object. 
Whenever it fails to separate a group of objects, they all have SSV and the only way to separate them is by using FCM with 
PL. 

4. The MISR Algorithm 
As alluded to in Section 1, since many objects contain ambiguous information, no single feature or even group of features is 
always appropriate for segmenting each object in an image. This was the rationale behind independently merging the 
segmented results produced by FCM using PL, PI and CIL in [16, 17]. The various steps involved in the merging of 
individually segmented results (MISR) algorithm are detailed in Algorithm 1. IR , LR  and CR  represent the individual 
segmented regions produced by FCM using PI, PL, and CIL respectively. To merge similar regions, their similarity is 
determined by summing the absolute differences of pixel intensity on a bitwise basis (Step 1)—so the smaller the difference, 
the greater the similarity between regions. Region I

jR  is considered similar to L
kR  if:-  
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I
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where ( )yxP ,  is a pixel at location ( )yx,  and ( ) ( ) L
k

L
k

I
j

I
j RyxPRyxP ∈∧∈ ,,  

Similar regions are merged (Step 2) by computing the union of the relevant regions. The merging of two similar regions I
jR  

to L
kR  is defined as:- 

( ) ( ) ( ){ }L
k

I
jj RyxPRyxPyxPR ∈∨∈= ,,,   (6) 

Since the merged region is formed by combining two similar regions produced by FCM with different features, the result 
may contain some overlapping pixels which are treated as misclassified. The overlapping pixels between two merged regions 

iR  and jR are expressed as:- 



( ) ( ) ( ){ }ji
O
ij RyxPRyxPyxPR ∈∧∈= ,,,  (7) 

where ℜ≤≤≠ jiANDji ,1 . 
To derive the final segmented result, the overlapping pixels need to be redistributed between the merged regions. This 
requires all misclassified pixels to be removed (Step 3) from the corresponding merged regions using the following 
equations:-  

( ) ( ) ( ){ }O
ijii RyxPRyxPyxPR ∉∧∈= ,,,'  (8) 

( ) ( ) ( ){ }O
ijjj RyxPRyxPyxPR ∉∧∈= ,,,'  (9) 

There are certain scenarios where it is propitious to apply the connectivity topological feature within the MISR algorithm and 
these are examined in Section 5.3. If this feature is used, all misclassified pixels are distributed to the corresponding merged 
pair using 8-connectivity (Step 4), to ensure that all weak object connections are considered. If there are still any remaining 
non-connected pixels, these are redistributed by FCM using CIL (Step 5) in order to consider both PI and PL. To choose a 
suitable pair of initially segmented regions IR , LR  and CR  for MISR requires the selection of an appropriate feature set. 
Both the selection strategy and the criterion for applying the connectivity feature are discussed fully in the next section.  

Algorithm 1:  Merging of individually segmented results (MISR). 

Precondition: A selected pair of initially segmented 
regions IR , LR  and CR ; ℜ , Connectivity. 
Post-condition: The segmented regions R .  
1. Determine similar regions using (5). 
2. Merge these similar regions using (6). 
3. Calculate the overlap between the two merging 

regions using (7) and remove overlapping pixels 
using (8) and (9). 

4. IF (Connectivity=TRUE) THEN distribute 8-
connected objects of the overlap to merging 
regions iR and jR  using 8-connectivity.  

5. Redistribute any remaining overlapping pixels by a 
clustering algorithm using CIL.      

 

5. The FISFS Algorithm 
As the FISFS flowchart in Figure 3 confirms, a key issue is being able to identify and separate objects in an image having SSV 
and DSV. Once this is achieved, SSV objects are segmented by FCM using PL, while DSV object segmentation requires 
selecting the most appropriate pair of feature sets from PI, PL or CIL. Similar regions of the initially segmented regions are 
then merged and the overlap for each merging region pair is calculated and removed. The overlapping pixels are the 
distributed to between this pair of merging regions. Before detailing the FISFS algorithm, the following sections examine 
firstly the issue of separating objects having SSV and DSV and secondly, the best feature set selection.  
 

5.1 The SOSDS Algorithm 
 

Any strategy that is able to identify and distinguish objects having SSV and DSV undoubtedly affords the potential of 
improved image segmentation. A description of one such strategy is given in Algorithm 2 called the separation of objects 
having similar and dissimilar surface variations (SOSDS) algorithm. As discussed in Section 3, CR  is used as the initial 
segmented regions to determine whether an object has either SSV or DSV. To locate SSV regions, the area C

iRA  of the 
segmented region C

iR  is calculated using a convex hull:- 

( )( )C
i

R RConvexhullAreaA
C
i =                                 (10) 

where ( )•Area  and ( )•Convexhull  are respectively the area and vertices of the convex hull of a segmented region. To identify 

objects having SSV, similar regions are merged using (6) in (Step 2) to form M
kR  and then calculate the area M

kRA , C
iRA ,

C
jRA  

of region M
kR , C

iR  and C
jR  respectively using (10) (Step 3), where M  is the number of merged regions in M

kR , ℜ≤≤ M2 , 

⎣ ⎦21 ℜ≤≤ k  and ℜ≤≤ ji,1 . The difference between the area of the largest merged region of the kth merging region and M
kRA  

(the area of the kth merging region) is a measure of shape distortion (Step 5), because the merging region M
kR  always 



contains the largest merged region. If this distortion measure is less than 0.5dB, the human eye will not perceive a change in 
shape and the segmentation algorithm is unable to separate the objects, i.e. the region has SSV. A perceptual threshold maxT  
which incorporates both shape distortion and human perception is now introduced into the SSV identification process. The 
maximum value of maxT  is calculated as follows:- 

RegionMergedLargest  theofArea
RegionMergingofArea20log0.5 =  

RegionMergedLargest  theofAreaRegionMergingofArea −⇒ RegionMergedLargest  theofArea0.059×=   

RegionMergedLargest   theofArea
RegionMergedLargest  theofAreaRegionMergingofArea −

⇒ 059.0=  

so the threshold is bounded 059.0max =T                        (11) 
Finally, objects having SSV are separated from those with DSV which are represented by region DR , where D , ℜ≤≤ D0 is 
the number of DSV objects. Those clusters not merged are treated as clusters containing objects having DSV.    

Algorithm 2: Separation of objects having similar and dissimilar surface variations (SOSDS) 

Precondition: Initially segmented regions CR  andℜ .  
Post condition: Objects having SSV ( M

iR ) and DSV 
( DR ). 
1. Set 1=M  and 1=k . 
2. Form region M

kR  by combining C
iR  and C

jR   by (6). 

3. Calculate areas M
kRA , C

iRA and 
C
jRA  using (10). 

4. Find the maximum area C
iA '  of ( )1+M  regions in M

kR . 

5. IF max'

'

T
A

AA
C

i

C
i

R M
k

≤
−

 THEN two regions C
iR  and C

jR  

have SSV and M  is incremented. 
     Repeat Steps 2-5 forming M

kR  by merging M
kR  and 

another region (which has not already been merged) 
from CR   

6. IF ( )2≥M  THEN increment k  and GOTO Step 1 
7. Separate region DR  which has D  objects with DSV 

from CR . 
 

5.2 Selection Strategy for Feature Sets 
 

To segment objects having DSV, an appropriate feature set needs to be determined as any clustering algorithm separately 
using PL, PI and CIL will be unable to segment these objects [16]. Section 2 showed that for ℜ  regions, the degree of 
arbitrariness of FCM using PL increases by ( )2ℜO , so in proposing a feature set selection strategy, two scenarios are 
considered: i) 2>ℜ  ii) 2=ℜ . In the former, FCM using CIL provides comparatively better results than using only PL 
because of the arbitrariness of FCM using PL. Thus selecting CIL and PI as the feature set is fully justified for the initial 
segmentation in the MISR algorithm. For 2=ℜ  however, it is necessary to choose a pair of feature sets from PI, PL and CIL. 
To select the best set, the amount of overlap between pairs of merged regions representing the misclassified pixels of these 
regions is exploited. The less the degree of overlap, the lower the distribution time complexity and the more visually 
distinctive are the objects. Conversely, ambiguity during the distribution of overlapping pixels increases proportionally, so 
the misclassification risk is proportional to any overlap. To minimize this risk therefore, emphasis is given to the pair of 
feature sets that produces the minimal overlap. The approach used in this paper to calculate the overlap between a pair of 
merged regions is formalised in Lemma 4.  

Lemma 4: The amount of overlap between a pair of merging regions is proportional to the value of the acute angle between 
the decision boundaries of the initial segmented regions, separately produced using the two selected feature sets.  

Proof: Let 1L  and 2L  be two non-parallel decision boundaries for FCM using PL and CIL respectively and 1θ  be the acute 
angle between them (Figure 7(c)). The two segmented regions yielded by these two decision boundaries are shown in Figure 
7(a) ( LR1  and LR2 ) and Figure 7(b) ( CR1 and CR2 ) respectively. The merging of L

iR  with its similar region C
jR  produces a 

merged region M
KR . The overlapping area between a pair of merging regions M

KR  and M
KR 1+  for initially produced region L

iR  



  

 
(a)  

(b) 
 
 
 
 

(c) 

 

Figure 7: Examples of the initial segmented results produced 
by FCM using a two-region synthetic image, (a) Only PL, (b) 
Only CIL, (c) Angle between the two decision boundaries. 

considering PL is defined as:- 
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where iρ  is a matching factor used in calculating the exact area of L
iR  subtended by 1θ . Since LRA 1  and LRA 2  are constant for 

an image and specific feature set assuming 1ρ  and 2ρ  are constant, then:- 
  

1
1, θ∝+

M
kkRA  (12) 

 
 
 
 
 
                                                                      (a)                                   (b) 
 

Figure 8: Acute angle between two decision boundaries produced by FCM separately using (a) PL and CIL, (b) PL and PI. 
 

In the best case, 1L  and 2L  are the same so 01 =θ  and the overlapping region 01 =+
M

kkRA , . For the average case 41
πθ = , while 

the worst case 21
πθ =  which corresponds to maximum overlap fA

M
kkR

2
11 =+, , where f  is the foreground of objects. Since 

the maximum overlap is effectively half the foreground, it represents the average cluster size.   
As previously mentioned, misclassification increases with overlap, so to limit to some extent, the arbitrariness effect of FCM 
using PL in selecting the feature sets, a constraint is applied to 1θ  by comparing it with its average value i.e. 4

π . To select 

the best set, the following two cases are now considered, 41
πθ >  and 41

πθ ≤ .  

Lemma 5: For any acute angle 41
πθ >  between the decision boundaries of FCM separately using CIL and PL, the feature 

sets CIL and PI are used in the MISR algorithm. 

Proof: For 41
πθ > , CIL strongly dominates PL in the segmentation process and has a high misclassification risk (Lemma 4) 

when merging. It is because of the existence of two objects with quite different brightness values that PI outweighs PL. The 
feature set CIL and PI will thus produce less overlapping regions.                          
 
For the case 41

πθ ≤ , to minimise misclassification the feature sets are selected based on the minimum value of the angle 
between the corresponding decision boundaries as follows:- 
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                 (13) 

 
where 1θ = Angle between the decision boundaries for FCM using only CIL and PL; 2θ = Angle for FCM using only PL and 
PI; 3θ = Angle for FCM using only CIL and PI. 
 

5.3 The FISFS Algorithm 
 

Having described both the MISR (Section 4) and SOSDS (Section 5.2) algorithms, these are embedded in the fuzzy image 
segmentation considering surface characteristics and feature set selection strategy (FISFS) algorithm detailed in Algorithm 
3. Steps 1 and 2 respectively segment the foreground f  and separate those objects in the image having SSV and DSV, using 
the SOSDS algorithm. FCM using CIL is applied since as alluded in Section 3 CR  is used to determine whether objects have 
either SSV or DSV. For those objects having SSV, FCM using PL is used for segmentation (Step 3), while those objects with 
DSV, since they are visually distinct in terms of pixel intensity, are segmented by the MISR algorithm. Step 4 considers 
whether the connectivity feature is to be employed within the MISR algorithm. For two regions, if 41

πθ >  then CIL and PI 
(Lemma 5) are used in MISR, however it can be intuitively argued that connectivity should not be applied because while each 
region has a distinct PI, one or more may possess a similar PI to another region that is actually connected to it. In such 
circumstances, to eliminate the possibility of misclassification, connectivity is not applied. For all other scenarios, the feature 
set selection strategy (Section 5.2) with connectivity is exploited in the MISR algorithm due to the potential impact of PL 
over PI in CIL.  

Algorithm 3: Fuzzy image segmentation considering surface characteristics and feature set selection (FISFS) 

Precondition: The foreground region f  to be 
segmented,ℜ , 1θ  and 2θ .  
Post condition: The final segmented regions R . 
1. Segment f  by FCM using CIL into ℜ regions 

represented by CR .  
2.  Find M

kR  and DR  using SOSDS for CR . 
3.  IF ( )1≥k   THEN FOR ki ,,1K=  
        Segment M

iR  into M  regions by FCM using PL. 
4.  IF ( )2≥D  THEN 
            Connectivity=TRUE 

IF 2=D  THEN 
IF ( )41

πθ >  THEN  
    Connectivity=FALSE 
    Segment DR  into D  regions using MISR  
    for IR  and CR  (Lemma 5). 
ELSE   
 Select feature sets using (13). 
 Segment DR  into D  regions by MISR. 

ELSE 
Segment DR by MISR using IR  and CR . 

6. Complexity Analysis of FISFS Algorithm 
Any visually meaningful object is considered as a region of interest for object-based image segmentation and so the number 
of regions to be segmented is always constrained.  

Assumption 1:  Let ℜ  and n  be the number of regions and total number of pixels respectively, where ℜ << n  so ℜ  is 
considered a constant i.e., ( )1O  with respect to n .   

The complete time complexity of the FISFS algorithm is now formally presented. 

Lemma 6: ℜ  similar regions are computed in ( )nO  time. 



Proof:  The average cluster size is ℜ
n pixels. To find one similar region requires ( ) ( )nOnO =ℜ×ℜ  time, so to calculate ℜ  

similar regions needs ( ) ( )nOnO =×ℜ , using Assumption 1.   

Lemma 7: Forming ℜ  merging regions can be performed in ( )nO  time. 

Proof:  A merging region formed from a pair of similar regions needs in the worst case ( )ℜ
nO 2  time, so the total time 

required for merging ℜ  similar pairs is ( ) ( )nOnO =ℜ×ℜ 2 .  

Lemma 8: The total time complexity for calculating the overlap between 2cℜ  pairs of merging regions is ( )nO . 

Proof: In the worst case, the maximum size of any merging region is n , so the time required to calculate the overlap is ( )nO . 
Since, the number of pairs of merging regions is 2Cℜ , the total calculation time of the overlap for 2Cℜ  pairs is:- 

 ( ) ( ) ( ) ( )nOnOnOnCO =⎟
⎠
⎞⎜

⎝
⎛ −ℜℜ=⎟

⎠
⎞⎜

⎝
⎛ ×−ℜℜ=×ℜ

2
1

2
1

2 .   

Lemma 9: Removing the overlap from ℜ  merged regions requires ( )nO  time. 

Proof: On average, the maximum overlap between a pair of ℜ  merging regions is ( ) ℜ=ℜ+ℜ
nnn

2
1  so to remove the 

overlap from a corresponding pair of merging regions takes ( )ℜ
nO  time (Lemma 8).  For 2cℜ  merging pairs, the total 

required time is ( ) ( )nOnCO =ℜ×ℜ
2 .  

Lemma 10: The connected components of a set of n  pixels can be found in ( )nO  time [20].   

Lemma 11: The distribution of the connected components of n  pixels using connectivity requires ( )nnO log  time [1].  

Lemma 12: The time complexity for the distribution of n  pixels using FCM is ( )nO  [1].  

Lemma 13: The time required for the MISR algorithm is ( )nnO log . 

Proof: From Lemma 6 and Lemma 7, the time required for Steps 1 and 2 are ( )nO  and ( )nO  respectively. Step 3 is completed 
in ( ) ( ) ( )nOnOnO =+  time (Lemma 8 & Lemma 9), while Steps 4 and 5 are in ( )nnO log  and ( )nO  respectively (Lemma 11 & 
Lemma 12) so the time complexity for MISR is:- ( ) ( ) ( ) ( ) ( ) ( )nnOnOnnOnOnOnO loglog =++++      

Lemma 14: The convex hull of n  pixels and its area can be computed in ( )nnO log  time [21] [18], [19].   

Lemma 15: The time complexity for SOSDS is ( )nnO log . 

Proof:  For one iteration, Steps 1, 2, 3, 4, 5, and 6 require ( )1O , ( )nO  (Lemma 7), ( )nnO log  (Lemma 14), ( ) ( )ℜ=+ OMO 1 , 
( )1O  and ( )1O  respectively, since the maximum value of M  in Step 4 is ( )1−ℜ . In the worst case, the maximum number of 

iterations for Steps 2 to 5 is 2Cℜ  considering both internal and external loops for Steps 5 and 6 respectively.  The total 
computational time is thus ( ) ( ) ( ) ( )ℜ×+×+×+ ℜℜℜ

222 log1 COnnCOnCOO ( ) ( ) ( )nnOCOCO log11 22 =×+×+ ℜℜ .  

Lemma 16: The computational time complexity for the FISFS algorithm is ( )nnO log . 

Proof: Using Lemma 12, Steps 1 and 3 are executed in ( )nO  and ( )nO  time respectively since in the worst case, the 
maximum value of k  in Step 3 is 2

ℜ , while from Lemma 15, Step 2 requires ( )nnO log  time. In Step 4, if connectivity is not 
applied (Lemma 13), the required time is ( )nO , otherwise it is ( )nnO log  time. Thus, the total time needed for the FISFS 
algorithm is ( ) ( ) ( ) ( ) ( ) ( )nnOnOornnOnOnnOnO logloglog =+++ .  

7. Experimental Results 
The FCM [3], PCM [4], SFCM and new FISFS algorithms were all implemented using Matlab 6.1 (The Mathworks 

Inc.). For FCM, PCM and SFCM only PI, PL and CIL were used. A total of 146 different natural and synthetic gray-scale 
images were randomly selected for the experimental analysis, comprising up to 5 different regions (objects) having various 



degrees of surface variation, (obtained from IMSI2, own collection, and the Internet). To segment only the foreground objects 
in an image, the background was manually removed by setting it to zero. Any zero-valued foreground object pixels were 
replaced by 1, which had no effect upon visual perception and avoided the possibility of foreground pixels merging with the 
background. PL in the form of the x, y coordinates were normalised within the range [0, 255] in order to constrain them to the 
same range of PI for 8-bit gray-scale images. The perceptual threshold was set 05.0max =T  as discussed in Section 5.1. 
To quantitatively appraise the performance of all the various fuzzy clustering algorithms, the efficient objective segmentation 
evaluation method, discrepancy based on the number of misclassified pixels [1] was used. Two types of error, namely Type I, 

ierrorI  and Type II, ierrorII  are computed, the former being the percentage error of all ith region pixels misclassified into 
other regions, while the latter is the error percentage of all region pixels misclassified into ith region.  Representative samples 
of the manually segmented reference regions together with their original images are shown in Figures 9(a)-9(b), 10(a)-10(b) 
and 11(a)-11(b). To provide a better visual interpretation of the segmented results, both the reference and segmented regions 
are displayed using different colours rather than their original gray-scale intensities. Note that only the best segmentation 
results of FCM, PCM and SFCM with related feature are presented as a comparison with FISFS in Figures 9, 10 and 11. 
 

  
(a) Original (b) Ref. Image (c) FCM using CIL 

  
(d)PCM using CIL (e)SFCM using PL (f) FISFS 
Figure 9:  (a) Original horse image, (b) Manually segmented 
reference of (a). (c)-(f) Segmented results of (a). 

 
The horse image in Figure 9(a) has two different regions: the horse ( )1R  and the woman ( )2R . The best segmented results for 
FCM, PCM, SFCM and FISFS are shown in Figure 9(c)-(f). If the segmented results in Figure 9(c)-(e) are compared with the 
manually segmented reference regions in Figure 9(b), it is visually apparent a large number of pixels of region ( )1R  have been 
misclassified into ( )2R  and vice versa. This is because both regions contain certain grey level pixel intensity variations 
(Figure 9 (c)-(d)) and two objects having different shape and inappropriate orientation for PL are connected to each other 
(Figure 9 (e)). In contrast, many of these pixels have been correctly classified by the FISFS algorithm in Figure 9(f) because 
of the strategy employed to select the most appropriate feature sets. The corresponding average Type I and Type II errors for 
FCM, PCM and SFCM for all feature sets (PI, PL and CIL) and FISFS are given in Table 1, which confirms the improvement 
of FISFS with an average error of 5.3%, while the next best performance was achieved by FCM using CIL with an average 
error of 13%.  
A second sample image (scene) is shown in Figure 10(a), which contains three different regions: sky ( )1R , hill ( )2R  and 
water ( )3R , each having different pixel intensities. The best segmented results for FCM, PCM, SFCM, and FISFS are shown 
in Figure 10(c)-(f) respectively. For the results produced by FCM, PCM and SFCM shown in Figure 10(c)-(e), some pixels in 

2R  are misclassified into 3R  and a considerable number of pixels of 3R  are misclassified into 2R  and 1R  due to region PI 
variation. The number of misclassified pixels is significantly reduced with the FISFS algorithm (Figure 10(f)) as a 
consequence of it merging the individual results produced separately by FCM using PI and CIL. This improvement is again 
confirmed in Table 1, which shows the average and the next best average error percentages of FISFS and SFCM using CIL 
were 7.45% and 11.1% respectively.    
 
 
 

                                                 
2 IMSI’s Master Photo Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA. 
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Table 1: Percentage errors for the segmented regions in Figure 9, 10 and 11. 

FCM PCM SFCM Error Region Image 
PL PI CIL PL PI CIL PL PI CIL 

FISFS 

Horse 10.5 43.4 21 97.2 7.4 3.8 10 43.4 43.4 3 
Scene 51 25.4 40.2 99.7 3.6 96.4 49.4 24.5 24.5 21.2 R1 

Animal 47.8 30.1 0 0 12.8 3.6 0 37.1 37.1 0 
Scene 31.6 0.7 0.34 0 1.14 0.3 33.3 0.8 0.8 0.3 R2 Animal 0 71.9 38.8 93.1 100 24.3 19.9 69.1 69.1 8.4 
Scene 38.4 15.8 36.6 100 83 0.4 39.3 16.2 16.2 6 R3 Animal 0.3 92.1 22.1 0 59.4 29 51 86.9 87.7 0.01 

R4 Animal 0 69.8 31.2 99.4 47.9 93.3 0 71.5 75.4 24.4 

Type I 

R5 Animal 100 67.6 21.9 0 93.2 2.2 100 64.7 64.7 0 
Horse 18.3 27.4 5 0 89.9 89.1 23.7 27.4 27.4 7.6 
Scene 35.8 5.5 22.7 0 49.5 0.2 37.1 6 6 2.45 R1 

Animal 0.02 26.4 0 0 23.9 0 0 25.7 25.7 0 
Scene 18.4 3.5 1.28 99.9 2.3 0.5 18 3.4 3.4 1.7 R2 Animal 0.03 5.4 4.4 0 0 6.2 0 6.7 6.7 0 
Scene 10.7 16.5 25 0.01 2.2 62.6 10.2 16 16 13.1 R3 Animal 0 14.2 9.7 23.2 8.4 6.8 0 17.5 23.9 2.1 

R4 Animal 16 18.9 3.5 0 41 0 16 19.3 14.5 0 

Type II 

R5 Animal 12 16.4 10.5 33.3 3.9 31.3 13.7 12.9 12.9 8.2 
Horse 14.4 35.4 13 48.6 48.6 46.5 16.9 35.4 35.4 5.3 
Scene 31 11.2 21 49.9 23.6 26.7 31.2 11.1 11.1 7.45 Average Error 

Animal 17.6 41.3 14.2 24.9 39.1 19.7 20.1 41.1 41.7 4.3 
 

 
(a) 

 
(b) 

 
(c) FCM using PI 

 
(d) PCM using PI 

 
(e) SFCM using CIL 

 
(f) FISFS 

Figure 10: (a) Original scene image, (b) Manually segmented reference 
of (a). (c)-(f) Segmented results of (a). 

 
The final sample image (animal) in Figure 11(a) has five separate regions: horse ( )1R , kangaroo ( )2R , snake ( )3R , peacock 
( )4R  and the tree branch ( )5R . Note, particularly that ( )2R  and ( )3R  as well as ( )4R  and ( )5R  both have SSV, while ( )1R  has 
only DSV. The best segmented results of each algorithm are shown in Figure 11(c)-(f) respectively. For objects having SSV, 
FCM and PCM using CIL and SFCM using PL could neither separate ( )4R  from ( )5R  nor also ( )2R  from ( )3R  (Figure 11(c)-
(e)) because they do not consider SSV for each object. FISFS in contrast clearly separated ( )3R  from ( )2R  and ( )5R  
from ( )4R , with exception of a very small number of misclassified pixels of ( )2R  and ( )4R  due to the arbitrariness of FCM 
using PL. This again emphasises the consistent superior performance of FISFS compared to FCM, PCM and SFCM, which is 
due to embracing the concept of SSV and DSV for objects and incorporating a strategy to select the most appropriate feature 
sets. FISFS also generated a lower average error of 4.3% compared with the best average error values of 14.2%, 19.7% and 
20.1% for FCM, PCM and SFCM respectively (see Table 1) for this image. 
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(a) Original 

 
(b) Ref. Image 

 
(c) FCM using CIL  

(d) PCM using CIL 

 
(e) SFCM using PL 

 
(f) FISFS 

Figure 11:  (a) Original animal image, (b) Manually segmented 
reference of (a). (c)-(f) Segmented results of (a). 

 
To assimilate the overall segmentation performance of FISFS, it needs to be highlighted that only the best results for each 
clustering algorithm (FCM, PCM and SFCM) and the three feature sets (PL, PI and CIL) were considered. This means 9 
different combinations3 (see Figures 9-11) were compared with the FISFS algorithm. Of the 146 test images, FISFS produced 
superior results for 52 and of the remaining 94 images; FCM, SFCM and PCM provided better results for only 27, 23 and 14 
images respectively (Figure 12). Figure 13 shows that the average percentage error of the new FISFS algorithm, for all 146 
images is 16.77% compared with the best average percentage errors for FCM, SFCM and PCM of 20.5%, 24.7% and 33.7% 
respectively, again endorsing the improved performance of the FISFS algorithm compared with the other three clustering 
algorithms for all three feature sets. An analysis of the distribution of images where superior results were obtained revealed a 
high dependency upon the actual number of clustering algorithms used for comparative purposes, the different features 
selected and number of objects used in the experiments. Since the test image set was specifically constructed so that all 
possible data sets were considered, embracing different types of objects and features using different clustering algorithms, the 
overall superiority of the FISFS algorithm is considerably significant. 
Finally, the sensitivity of the perceptual threshold maxT  in the SOSDS algorithm was analysed in respect to its effect upon the 
average percentage error of all images.  Figure 14 shows maxT  plotted over a range of different threshold settings and the 
results confirm the negligible impact upon overall performance, thus vindicating the choice of 05.0max =T  in Section 5.1.  
 

0

10

20

30

40

50

60

FPL FPI FCIL PPL PPI PCIL SPL SPI SCIL FISFS

Algorithms

N
um

be
r o

f I
m

ag
es

 
Figure 12: The best results for different algorithms3  

 

                                                 
3 To clarify the nomenclature in Figures 12 and 13, the initial letters F, P, S represent the FCM, PCM and SFCM algorithms respectively, while the 
following letters indicate which feature was used (PI, PL or CIL).   
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Figure 13: The average error percentages for different algorithms3  

8. Conclusions 
This paper has presented a new fuzzy image segmentation considering surface characteristics and feature set selection 
strategy (FISFS) algorithm which exploits features such as connectivity, the arbitrariness of FCM and object surface 
similarity, to provide superior segmentation performance compared with the FCM, PCM and SFCM clustering algorithms for 
three separate features and a wide variety of image types. Two special algorithms specifically manage the important merging 
of initially segmented regions and the separation of objects having similar and dissimilar surface variations in an image, with 
a perceptual threshold incorporated to assist in surface variation identification. A concise time-complexity and threshold 
sensitivity analysis of the FISFS algorithm has also been presented.  
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Figure 14: Sensitivity analysis of the threshold Tmax. 
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