5,221 research outputs found

    The IBMAP approach for Markov networks structure learning

    Get PDF
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum

    Response of discrete nonlinear systems with many degrees of freedom

    Get PDF
    We study the response of a large array of coupled nonlinear oscillators to parametric excitation, motivated by the growing interest in the nonlinear dynamics of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS). Using a multiscale analysis, we derive an amplitude equation that captures the slow dynamics of the coupled oscillators just above the onset of parametric oscillations. The amplitude equation that we derive here from first principles exhibits a wavenumber dependent bifurcation similar in character to the behavior known to exist in fluids undergoing the Faraday wave instability. We confirm this behavior numerically and make suggestions for testing it experimentally with MEMS and NEMS resonators.Comment: Version 2 is an expanded version of the article, containing detailed steps of the derivation that were left out in version 1, but no additional result

    Quantum walks of correlated particles

    Get PDF
    Quantum walks of correlated particles offer the possibility to study large-scale quantum interference, simulate biological, chemical and physical systems, and a route to universal quantum computation. Here we demonstrate quantum walks of two identical photons in an array of 21 continuously evanescently-coupled waveguides in a SiOxNy chip. We observe quantum correlations, violating a classical limit by 76 standard deviations, and find that they depend critically on the input state of the quantum walk. These results open the way to a powerful approach to quantum walks using correlated particles to encode information in an exponentially larger state space

    Discrete charging of metallic grains: Statistics of addition spectra

    Full text link
    We analyze the statistics of electrostatic energies (and their differences) for a quantum dot system composed of a finite number KK of electron islands (metallic grains) with random capacitance-inductance matrix CC, for which the total charge is discrete, Q=NeQ=Ne (where ee is the charge of an electron and NN is an integer). The analysis is based on a generalized charging model, where the electrons are distributed among the grains such that the electrostatic energy E(N) is minimal. Its second difference (inverse compressibility) χN=E(N+1)2E(N)+E(N1)\chi_{N}=E(N+1)-2 E(N)+E(N-1) represents the spacing between adjacent Coulomb blockade peaks appearing when the conductance of the quantum dot is plotted against gate voltage. The statistics of this quantity has been the focus of experimental and theoretical investigations during the last two decades. We provide an algorithm for calculating the distribution function corresponding to χN\chi_{N} and show that this function is piecewise polynomial.Comment: 21 pages, no figures, mathematical nomenclature (except for Abstract and Introduction

    A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases

    Full text link
    We use hydrodynamics to investigate non-stationary channel flows of freely cooling dilute granular gases. We focus on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation is exactly soluble, and the solution develops a finite-time density blowup. The heat diffusion, however, becomes important near the attempted singularity. It arrests the density blowup and brings about novel inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. Both the density profile of an ICS, and the characteristic relaxation time towards it are determined by a single dimensionless parameter that describes the relative role of the inelastic energy loss and heat diffusion. At large values of this parameter, the intermediate cooling dynamics proceeds as a competition between low-density regions of the gas. This competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio

    CPSP-web-tools: a server for 3D lattice protein studies

    Get PDF
    Summary: Studies on proteins are often restricted to highly simplified models to face the immense computational complexity of the associated problems. Constraint-based protein structure prediction (CPSP) tools is a package of very fast algorithms for ab initio optimal structure prediction and related problems in 3D HP-models [cubic and face centered cubic (FCC)]. Here, we present CPSP-web-tools, an interactive online interface of these programs for their immediate use. They include the first method for the direct prediction of optimal energies and structures in 3D HP side-chain models. This newest extension of the CPSP approach is described here for the first time
    corecore