1,407 research outputs found

    Sublattice addressing and spin-dependent motion of atoms in a double-well lattice

    Full text link
    We load atoms into every site of an optical lattice and selectively spin flip atoms in a sublattice consisting of every other site. These selected atoms are separated from their unselected neighbors by less than an optical wavelength. We also show spin-dependent transport, where atomic wave packets are coherently separated into adjacent sites according to their internal state. These tools should be useful for quantum information processing and quantum simulation of lattice models with neutral atoms

    Environment and behavior: Neurochemical effects of different diets in the calf brain

    Get PDF
    open7noCalves reared for the production of white veal are subjected to stressful events due to the type of liquid diet they receive. Stress responses are mediated by three main stress-responsive cerebral regions: the prefrontal cortex, the paraventricular nucleus of the hypothalamus, and the nucleus of the solitary tract of the brainstem. In the present study, we have investigated the effects of different diets on these brain regions of ruminants using immunohistochemical methods. In this study, 15 calves were used and kept in group housing systems of five calves each. They were fed with three different diets: a control diet, a milk diet, and a weaned diet. Brain sections were immunostained to evaluate the distribution of neuronal nitric oxide synthase and myelin oligodendrocyte glycoprotein immunoreactivity in the prefrontal cortex; the expression of oxytocin in the paraventricular nucleus; and the presence of c-Fos in the A2 group of the nucleus of the solitary tract. The main results obtained indicate that in weaned diet group the oxytocin activity is lower than in control diet and milk diet groups. In addition, weaning appears to stimulate myelination in the prefrontal cortex. In summary, this study supports the importance of maintaining a nutritional lifestyle similar to that occurring in natural conditions.openPeli A.; Grandis A.; Tassinari M.; Bergamini P.F.; Tagliavia C.; Roccaro M.; Bombardi C.Peli A.; Grandis A.; Tassinari M.; Bergamini P.F.; Tagliavia C.; Roccaro M.; Bombardi C

    The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex.

    Get PDF
    Subunit T of the native muscle troponin complex is a recognised substrate of transglutaminase both in vitro and in situ with formation of isopeptide bonds. Using a proteomic approach, we have now determined the precise site of in vitro labelling of the protein. A preparation of troponin purified from ether powder from mixed rabbit skeletal muscles was employed as transglutaminase substrate. The only isoform TnT2F present in our preparation was recognised as acyl-substrate by human type 2 transglutaminase which specifically modified glutamine 13 in the N-terminal region. During the reaction, the troponin protein complex was polymerized. Results are discussed in relation to the structure of the troponin T subunit, in the light of the role of troponins in skeletal and cardiac muscle diseases, and to the rules governing glutamine side chain selection by tissue transglutaminase

    Bose-Einstein condensation in dark power-law laser traps

    Full text link
    We investigate theoretically an original route to achieve Bose-Einstein condensation using dark power-law laser traps. We propose to create such traps with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling their azimuthal order â„“\ell allows for the exploration of a multitude of power-law trapping situations in one, two and three dimensions, ranging from the usual harmonic trap to an almost square-well potential, in which a quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian traps. In addition, for a fixed atom number, higher transition temperatures are obtained in such configurations when compared with a harmonic trap of same volume. This effect, which results in a substantial acceleration of the condensation dynamics, requires a better but still reasonable focusing of the Laguerre-Gaussian beams

    Bio-inspired non self-similar hierarchical elastic metamaterials

    Get PDF
    Hierarchy provides unique opportunities for the design of advanced materials with superior properties that arise from architecture, rather than from constitutive material response. Contrary to the quasi-static regime, where the potential of hierarchy has been largely explored, its role in vibration mitigation and wave manipulation remains elusive. So far, the majority of the studies concerning hierarchical elastic metamaterials have proposed a selfsimilar repetition of a specific unit cell at multiple scale levels, leading to the activation of the same bandgap mechanism at different frequencies. On the contrary, here, we show that by designing non self-similar hierarchical geometries allows us to create periodic structures supporting multiple, highly attenuative and broadband bandgaps involving (independently or simultaneously) different scattering mechanisms, namely, Bragg scattering, local resonance and/or inertial amplification, at different frequencies. The type of band gap mechanism is identified and discussed by examining the vibrational mode shapes and the imaginary component of the wavenumber in the dispersion diagram of the unit cell. We also experimentally confirm this by performing measurements in the lowest frequency regime on a 3D printed structure. Hierarchical design strategies may find application in vibration mitigation for civil, aerospace and mechanical engineering

    Influence of landscape context on the abundance of native bee pollinators in tomato crops in Central Brazil.

    Get PDF
    Made available in DSpace on 2018-08-08T00:50:12Z (GMT). No. of bitstreams: 1 Franceschinelli2017ArticleInfluenceOfLandscapeContextOnT.pdf: 1599822 bytes, checksum: 148c797a99c6db89f0eec1352bd2d3b6 (MD5) Previous issue date: 2017-11-07bitstream/item/181024/1/Franceschinelli2017-Article-InfluenceOfLandscapeContextOnT.pd

    Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress

    Get PDF
    Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and –signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management

    Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress

    Get PDF
    Grapevine (Vitis vinifera L.) is importantly cultivated worldwide for table grape and wine production. Its cultivation requires irrigation supply, especially in arid and semiarid areas. Water deficiency can affect berry and wine quality mostly depending on the extent of plant perceived stress, which is a cultivar-specific trait. We tested the physiological and molecular responses to water deficiency of two table grape cultivars, Italia and Autumn royal, and we highlighted their different adaptation. Microarray analyses revealed that Autumn royal reacts involving only 29 genes, related to plant stress response and ABA/hormone signal transduction, to modulate the response to water deficit. Instead, cultivar Italia orchestrates a very broad response (we found 1037 differentially expressed genes) that modifies the cell wall organization, carbohydrate metabolism, response to reactive oxygen species, hormones and osmotic stress. For the first time, we integrated transcriptomic data with cultivar-specific genomics and found that ABA-perception and –signalling are key factors mediating the varietal-specific behaviour of the early response to drought. We were thus able to isolate candidate genes for the genotype-dependent response to drought. These insights will allow the identification of reliable plant stress indicators and the definition of sustainable cultivar-specific protocols for water management
    • …
    corecore