3,199 research outputs found

    Robust MMSE Precoding Strategy for Multiuser MIMO Relay Systems with Switched Relaying and Side Information

    No full text
    In this work, we propose a minimum mean squared error (MMSE) robust base station (BS) precoding strategy based on switched relaying (SR) processing and limited transmission of side information for interference suppression in the downlink of multiuser multiple-input multiple-output (MIMO) relay systems. The BS and the MIMO relay station (RS) are both equipped with a codebook of interleaving matrices. For a given channel state information (CSI) the selection function at the BS chooses the optimum interleaving matrix from the codebook based on two optimization criteria to design the robust precoder. Prior to the payload transmission the BS sends the index corresponding to the selected interleaving matrix to the RS, where the best interleaving matrix is selected to build the optimum relay processing matrix. The entries of the codebook are randomly generated unitary matrices. Simulation results show that the performance of the proposed techniques is significantly better than prior art in the case of imperfect CSI.

    Search for supersolidity in 4He in low-frequency sound experiments

    Full text link
    We present results of the search for supersolid 4He using low-frequency, low-level mechanical excitation of a solid sample grown and cooled at fixed volume. We have observed low frequency non-linear resonances that constitute anomalous features. These features, which appear below about 0.8 K, are absent in 3He. The frequency, the amplitude at which the nonlinearity sets in, and the upper temperature limit of existence of these resonances depend markedly on the sample history.Comment: Submitted to the Quantum Fluids and Solids Conf. Aug. 2006 Kyot

    Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption

    Get PDF
    This study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27‐Όm oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r^2) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and root‐mean‐square error of 0.013, while the effective ALH retrieval has an error of 7.8% and root‐mean‐square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale

    Isospin Effect on the Process of Multifragmentation and Dissipation at Intermediate Energy Heavy Ion Collisions

    Get PDF
    In the simulation of intermediate energy heavy ion collisions by using the isospin dependent quantum molecular dynamics, the isospin effect on the process of multifragmentation and dissipation has been studied. It is found that the multiplicity of intermediate mass fragments NimfN_{imf} for the neutron-poor colliding system is always larger than that for the neutron-rich system, while the quadrupole of single particle momentum distribution QzzQ_{zz} for the neutron-poor colliding system is smaller than that of the neutron-rich system for all projectile-target combinations studied at the beam energies from about 50MeV/nucleon to 150MeV/nucleon. Since QzzQ_{zz} depends strongly on isospin dependence of in-medium nucleon-nucleon cross section and weakly on symmetry potential at the above beam energies, it may serve as a good probe to extract the information on the in-medium nucleon-nucleon cross section. The correlation between the multiplicity NimfN_{imf} of intermediate mass fragments and the total numer of charged particles NcN_c has the behavior similar to QzzQ_{zz}, which can be used as a complementary probe to the in-medium nucleon-nucleon cross section.Comment: 18 pages, 9 figure

    Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire

    Get PDF
    This paper presents the results of an experimental campaign where both the room temperature and the fire resistance of six double-tube concrete filled steel tubular slender columns with different combinations of concrete strength are studied. Firstly, the ultimate axial load of the specimens at room temperatura was experimentally obtained and afterwards the fire resistance of such columns subjected to a 20% of their load bearing capacity was measured. Given the reduced number of experimental results found in the literature on slender concrete filled tubular columns with double steel tubular cross-sections, the main objective of this paper is to compare the behaviour of such innovative cross-sections under ambient and high temperatures. The influence of filling the inner ring with concrete on the fire performance of these columns is studied in this paper, as well as the variation of thicknesses of the outer and inner steel tubes. Despite the fact that the tested columns are not covered by the scope of Eurocode 4, the current simple calculation models were applied in this paper in order to assess the validity of the standard to this typology of columns, unsafe results being found.The authors would like to express their sincere gratitude to the Spanish Ministry of Economy and Competitivity through the project BIA2012-33144 and to the European Community for the FEDER funds.Romero, ML.; Espinós Capilla, A.; Portoles Flaj, JM.; Hospitaler Pérez, A.; Ibåñez Usach, C. (2015). Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire. Engineering Structures. 99:536-545. https://doi.org/10.1016/j.engstruct.2015.05.026S5365459

    Electronic Transport in a Three-dimensional Network of 1-D Bismuth Quantum Wires

    Full text link
    The resistance R of a high density network of 6 nm diameter Bi wires in porous Vycor glass is studied in order to observe its expected semiconductor behavior. R increases from 300 K down to 0.3 K. Below 4 K, where R varies approximately as ln(1/T), the order-of-magnitude of the resistance rise, as well as the behavior of the magnetoresistance are consistent with localization and electron-electron interaction theories of a one-dimensional disordered conductor in the presence of strong spin-orbit scattering. We show that this behaviour and the surface-enhanced carrier density may mask the proposed semimetal-to-semiconductor transition for quantum Bi wires.Comment: 19 pages total, 4 figures; accepted for publication in Phys. Rev.

    Two band gap field-dependent thermal conductivity of MgB2MgB_2

    Full text link
    The thermal conductivity Îș(H,T)\kappa (H,T) of the new superconductor MgB2MgB_2 was studied as a function of the temperature and a magnetic field. No anomaly in the thermal conductivity Îș(H,T)\kappa (H,T) is observed around the superconducting transition in absence or presence of magnetic fields up to 14 Tesla; upon that field the superconductivity of MgB2MgB_2 persisted. The thermal conductivity in zero-field shows a TT-linear increase up to 50K. The thermal conductivity is found to increase with increasing field at high fields. We interpret the findings as if there are two subsystems of quasiparticles with different field-dependent characters in a two (LL and SS)-band superconductor reacting differently with the vortex structure. The unusual enhancement of Îș(H,T)\kappa (H ,T) at low temperature but higher than a (Hc2S≃3TH_{c2S}\simeq 3T) critical field is interpreted as a result of the overlap of the low energy states outside the vortex cores in the SS-band.Comment: 6 pages,3 figure

    Constraining Aerosol Vertical Profile in the Boundary Layer Using Hyperspectral Measurements of Oxygen Absorption

    Get PDF
    This study attempts to infer aerosol vertical structure in the urban boundary layer using passive hyperspectral measurements. A spectral sorting technique is developed to retrieve total aerosol optical depth (AOD) and effective aerosol layer height (ALH) from hyperspectral measurements in the 1.27‐Όm oxygen absorption band by the mountaintop Fourier Transform Spectrometer at the California Laboratory for Atmospheric Remote Sensing instrument (1,673 m above sea level) overlooking the LA basin. Comparison to AOD measurements from Aerosol Robotic Network and aerosol backscatter profile measurements from a Mini MicroPulse Lidar shows agreement, with coefficients of determination (r^2) of 0.74 for AOD and 0.57 for effective ALH. On average, the AOD retrieval has an error of 24.9% and root‐mean‐square error of 0.013, while the effective ALH retrieval has an error of 7.8% and root‐mean‐square error of 67.01 m. The proposed method can potentially be applied to existing and future satellite missions with hyperspectral oxygen measurements to constrain aerosol vertical distribution on a global scale
    • 

    corecore