413 research outputs found

    Robust metabolic transcriptional components in 34,494 patient-derived cancer-related samples and cell lines

    Get PDF
    BACKGROUND: Patient-derived bulk expression profiles of cancers can provide insight into the transcriptional changes that underlie reprogrammed metabolism in cancer. These profiles represent the average expression pattern of all heterogeneous tumor and non-tumor cells present in biopsies of tumor lesions. Hence, subtle transcriptional footprints of metabolic processes can be concealed by other biological processes and experimental artifacts. However, consensus independent component analyses (c-ICA) can capture statistically independent transcriptional footprints of both subtle and more pronounced metabolic processes. METHODS: We performed c-ICA with 34,494 bulk expression profiles of patient-derived tumor biopsies, non-cancer tissues, and cell lines. Gene set enrichment analysis with 608 gene sets that describe metabolic processes was performed to identify the transcriptional components enriched for metabolic processes (mTCs). The activity of these mTCs was determined in all samples to create a metabolic transcriptional landscape. RESULTS: A set of 555 mTCs was identified of which many were robust across different datasets, platforms, and patient-derived tissues and cell lines. We demonstrate how the metabolic transcriptional landscape defined by the activity of these mTCs in samples can be used to explore the associations between the metabolic transcriptome and drug sensitivities, patient outcomes, and the composition of the immune tumor microenvironment. CONCLUSIONS: To facilitate the use of our transcriptional metabolic landscape, we have provided access to all data via a web portal (www.themetaboliclandscapeofcancer.com). We believe this resource will contribute to the formulation of new hypotheses on how to metabolically engage the tumor or its (immune) microenvironment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40170-021-00272-7

    Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin

    Get PDF
    OBJECTIVE The aim of this study was to investigate whether apolipoprotein B100 of LDL suffers increased damage by glycation, oxidation, and nitration in patients with type 2 diabetes, including patients receiving metformin therapy. RESEARCH DESIGN AND METHODS For this study, 32 type 2 diabetic patients and 21 healthy control subjects were recruited; 13 diabetic patients were receiving metformin therapy (median dose: 1.50 g/day). LDL was isolated from venous plasma by ultracentrifugation, delipidated, digested, and analyzed for protein glycation, oxidation, and nitration adducts by stable isotopic dilution analysis tandem mass spectrometry. RESULTS Advanced glycation end product (AGE) content of apolipoprotein B100 of LDL from type 2 diabetic patients was higher than from healthy subjects: arginine-derived AGE, 15.8 vs. 5.3 mol% (P < 0.001); and lysine-derived AGE, 2.5 vs. 1.5 mol% (P < 0.05). Oxidative damage, mainly methionine sulfoxide residues, was also increased: 2.5 vs. 1.1 molar equivalents (P < 0.001). 3-Nitrotyrosine content was decreased: 0.04 vs. 0.12 mol% (P < 0.05). In diabetic patients receiving metformin therapy, arginine-derived AGE and methionine sulfoxide were lower than in patients not receiving metformin: 19.3 vs. 8.9 mol% (P < 0.01) and 2.9 vs. 1.9 mol% (P < 0.05), respectively; 3-nitrotyrosine content was higher: 0.10 vs. 0.03 mol% (P < 0.05). Fructosyl-lysine residue content correlated positively with fasting plasma glucose. Arginine-derived AGE residue contents were intercorrelated and also correlated positively with methionine sulfoxide. CONCLUSIONS Patients with type 2 diabetes had increased arginine-derived AGEs and oxidative damage in apolipoprotein B100 of LDL. This was lower in patients receiving metformin therapy, which may contribute to decreased oxidative damage, atherogenicity, and cardiovascular disease

    Usefulness of preclinical models for assessing the efficacy of late-life interventions for sarcopenia

    Get PDF
    Caloric restriction and physical exercise have proven beneficial against age-associated changes in body composition and declining physical performance; however, little is known regarding what benefit these interventions might have when initiated late in life. The study of mimetics of diet and exercise and the combination thereof may provide additional treatments for a vulnerable elderly population; however, how and when to initiate such interventions requires consideration in developing the most safe and efficacious treatment strategies. In this review, we focus on preclinical late-life intervention studies, which assess the relationship between physical function, sarcopenia, and body composition. We provide a conceptual framework for the ever-changing definition of sarcopenia and a rationale for the use of an appropriate rodent model of this condition. We finish by providing our perspective regarding the implications of this body of work and future areas of research that may also contribute to the ultimate goal of extending healthspan. Š 2011 The Author

    Mitochondrial-derived vesicles in skeletal muscle remodeling and adaptation

    Get PDF
    Mitochondrial remodeling is crucial to meet the bioenergetic demand to support muscle contractile activity during daily tasks and muscle regeneration following injury. A set of mitochondrial quality control (MQC) processes, including mitochondrial biogenesis, dynamics, and mitophagy, are in place to maintain a well-functioning mitochondrial network and support muscle regeneration. Alterations in any of these pathways compromises mitochondrial quality and may potentially lead to impaired myogenesis, defective muscle regeneration, and ultimately loss of muscle function. Among MQC processes, mitophagy has gained special attention for its implication in the clearance of dysfunctional mitochondria via crosstalk with the endo-lysosomal system, a major cell degradative route. Along this pathway, additional opportunities for mitochondrial disposal have been identified that may also signal at the systemic level. This communication occurs via inclusion of mitochondrial components within membranous shuttles named mitochondrial-derived vesicles (MDVs). Here, we discuss MDV generation and release as a mitophagy-complementing route for the maintenance of mitochondrial homeostasis in skeletal myocytes. We also illustrate the possible role of muscle-derived MDVs in immune signaling during muscle remodeling and adaptation

    Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors

    Get PDF
    Background: Sepsis survivors often develop chronic critical illness (CCI) and demonstrate the persistent inflammation, immunosuppression, and catabolism syndrome predisposing them to long-term functional limitations and higher mortality. There is a need to identify biomarkers that can predict long-term worsening of physical function to be able to act early and prevent mobility loss. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a well-accepted biomarker of cardiac overload, but it has also been shown to be associated with long-term physical function decline. We explored whether NT-proBNP blood levels in the acute phase of sepsis are associated with physical function and muscle strength impairment at 6 and 12 months after sepsis onset. Methods: This is a retrospective analysis conducted in 196 sepsis patients (aged 18-86 years old) as part of the University of Florida (UF) Sepsis and Critical Illness Research Center (SCIRC) who consented to participate in the 12-month follow-up study. NT-proBNP was measured at 24 h after sepsis onset. Patients were followed to determine physical function by short physical performance battery (SPPB) test score (scale 0 to12-higher score corresponds with better physical function) and upper limb muscle strength by hand grip strength test (kilograms) at 6 and 12 months. We used a multivariate linear regression model to test an association between NT-proBNP levels, SPPB, and hand grip strength scores. Missing follow-up data or absence due to death was accounted for by using inverse probability weighting based on concurrent health performance status scores. Statistical significance was set at p ≤ 0.05. Results: After adjusting for covariates (age, gender, race, Charlson comorbidity index, APACHE II score, and presence of CCI condition), higher levels of NT-proBNP at 24 h after sepsis onset were associated with lower SPPB scores at 12 months (p &lt; 0.05) and lower hand grip strength at 6-month (p &lt; 0.001) and 12-month follow-up (p &lt; 0.05). Conclusions: NT-proBNP levels during the acute phase of sepsis may be a useful indicator of higher risk of long-term impairments in physical function and muscle strength in sepsis survivors

    Establishment and characterisation of testicular cancer patient-derived xenograft models for preclinical evaluation of novel therapeutic strategies

    Get PDF
    Testicular cancer (TC) is the most common solid tumour in young men. While cisplatin-based chemotherapy is highly effective in TC patients, chemoresistance still accounts for 10% of disease-related deaths. Pre-clinical models that faithfully reflect patient tumours are needed to assist in target discovery and drug development. Tumour pieces from eight TC patients were subcutaneously implanted in NOD scid gamma (NSG) mice. Three patient-derived xenograft (PDX) models of TC, including one chemoresistant model, were established containing yolk sac tumour and teratoma components. PDX models and corresponding patient tumours were characterised by H&E, Ki-67 and cyclophilin A immunohistochemistry, showing retention of histological subtypes over several passages. Whole-exome sequencing, copy number variation analysis and RNA-sequencing was performed on these TP53 wild type PDX tumours to assess the effects of passaging, showing high concordance of molecular features between passages. Cisplatin sensitivity of PDX models corresponded with patients' response to cisplatin-based chemotherapy. MDM2 and mTORC1/2 targeted drugs showed efficacy in the cisplatin sensitive PDX models. In conclusion, we describe three PDX models faithfully reflecting chemosensitivity of TC patients. These models can be used for mechanistic studies and pre-clinical validation of novel therapeutic strategies in testicular cancer

    The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-β1 and integrin-β3

    Get PDF
    This study was designed to examine the influence of integrin subunit-β1 and subunit-β3 on the behavior of primary osteoblast-like cells, cultured on calcium phosphate (CaP)-coated and non coated titanium (Ti). Osteoblast-like cells were incubated with specific monoclonal antibodies against integrin-β1 and integrin-β3 to block the integrin function. Subsequently, cells were seeded on Ti discs, either non coated or provided with a 2 Οm carbonated hydroxyapatite coating using Electrostatic Spray Deposition. Results showed that on CaP coatings, cellular attachment was decreased after a pre-treatment with either anti-integrin-β1 or anti-integrin-β3 antibodies. On Ti, cell adhesion was only slightly affected after a pre-treatment with anti-integrin-β3 antibodies. Scanning electron microscopy showed that on both types of substrate, cellular morphology was not changed after a pre-treatment with either antibody. With quantitative PCR, it was shown for both substrates that mRNA expression of integrin-β1 was increased after a pre-treatment with either anti-integrin-β1 or anti-integrin-β3 antibodies. Furthermore, after a pre-treatment with either antibody, mRNA expression of integrin-β3 and ALP was decreased, on both types of substrate. In conclusion, osteoblast-like cells have the ability to compensate to great extent for the blocking strategy as applied here. Still, integrin-β1 and β3 seem to play different roles in attachment, proliferation, and differentiation of osteoblast-like cells, and responses on CaP-coated substrates differ to non coated Ti. Furthermore, the influence on ALP expression suggests involvement of both integrin subunits in signal transduction for cellular differentiation
    • …
    corecore