48 research outputs found

    Modeling the e-APD SAPHIRA/C-RED ONE camera at low flux level: An attempt to count photons in the near-infrared with the MIRC-X interferometric combiner

    Get PDF
    This is the final version. Available on open access from EDP Sciences via the DOI in this recordContext. We implement an electron avalanche photodiode (e-APD) in the MIRC-X instrument, upgrade of the 6-telescope nearinfrared imager MIRC, at the CHARA array. This technology should improve the sensitivity of near-infrared interferometry. Aims. We characterize a near-infrared C-RED ONE camera from First Light Imaging (FLI) using an e-APD from Leonardo (previously SELEX). Methods. We first used the classical Mean-Variance analysis to measure the system gain and the amplification gain. We then developed a physical model of the statistical distribution of the camera output signal. This model is based on multiple convolutions of the Poisson statistic, the intrinsic avalanche gain distribution, and the observed distribution of the background signal. At low flux level, this model constraints independently the incident illumination level, the total gain, and the excess noise factor of the amplification. Results. We measure a total transmission of 48 ± 3% including the cold filter and the Quantum Efficiency. We measure a system gain of 0.49 ADU/e, a readout noise of 10 ADU, and amplification gains as high as 200. These results are consistent between the two methods and therefore validate our modeling approach. The measured excess noise factor based on the modeling is 1.47 ± 0.03, with no obvious dependency with flux level or amplification gain. Conclusions. The presented model allows measuring the characteristics of the e-APD array at low flux level independently of preexisting calibration. With < 0.3 electron equivalent readout noise at kilohertz frame rates, we confirm the revolutionary performances of the camera with respect to the PICNIC or HAWAII technologies. However, the measured excess noise factor is significantly higher than the one claimed in the literature (<1.25), and explains why counting multiple photons remains challenging with this camera.European Union Horizon 2020Labex OSUG@2020CNRS/INS

    MYSTIC: Michigan Young STar Imager at CHARA

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this record.We present the design for MYSTIC, the Michigan Young STar Imager at CHARA. MYSTIC will be a K-band, cryogenic, 6-beam combiner for the Georgia State University CHARA telescope array. The design follows the image-plane combination scheme of the MIRC instrument where single-mode fibers bring starlight into a non-redundant fringe pattern to feed a spectrograph. Beams will be injected in polarization-maintaining fibers outside the cryogenic dewar and then be transported through a vacuum feedthrough into the ~220K cold volume where combination is achieved and the light is dispersed. We will use a C-RED One camera (First Light Imaging) based on the eAPD SAPHIRA detector to allow for near-photon-counting performance. We also intend to support a 4-telescope mode using a leftover integrated optics component designed for the VLTI-GRAVITY experiment, allowing better sensitivity for the faintest targets. Our primary science driver motivation is to image disks around young stars in order to better understand planet formation and how forming planets might influence disk structures.MYSTIC is funded by the USA National Science Foundation (PI: Monnier, NSF-ATI 1506540) while the MIRC-X project is funded by the European Research Council (PI: Kraus, ERC, Grant # 639889)

    The MIRC-X 6-telescope imager: Key science drivers, instrument design and operation

    Get PDF
    This is the final version of the article. Available from SPIE via the DOI in this recordMIRC-X is a new beam combination instrument at the CHARA array that enables 6-telescope interferometric imaging on object classes that until now have been out of reach for milliarcsecond-resolution imaging. As part of an instrumentation effort lead by the University of Exeter and University of Michigan, we equipped the MIRC instrument with an ultra-low read-noise detector system and extended the wavelength range to the J and H-band. The first phase of the MIRC-X commissioning was successfully completed in June 2017. In 2018 we will commission polarisation control to improve the visibility calibration and implement a 'cross-talk resiliant' mode that will minimise visibility cross-talk and enable exoplanet searches using precision closure phases. Here we outline our key science drivers and give an overview about our commissioning timeline. We comment on operational aspects, such as remote observing, and the prospects of co-phased parallel operations with the upcoming MYSTIC combiner.MIRC-X is funded by a Starting Grant from the European Research Council (ERC; grant agreement No. 639889, PI: Kraus) and funds from the University of Exeter. The project builds on earlier investments from the University of Michigan and the National Science Foundation (NSF, PI: Monnier)

    MIRC-X/CHARA: sensitivity improvements with an ultra-low noise SAPHIRA detector

    Get PDF
    This is the final version of the article. Available from Society of Photo Optical Instrumentation Engineers (SPIE) via the DOI in this record.MIRC-X is an upgrade of the six-telescope infrared beam combiner at the CHARA telescope array, the world's largest baseline interferometer in the optical/infrared, located at the Mount Wilson Observatory in Los Angeles. The upgraded instrument features an ultra-low noise and fast frame rate infrared camera (SAPHIRA detector) based on e-APD technology. We report the MIRC-X sensitivity upgrade work and first light results in detail focusing on the detector characteristics and software architecture.MIRC-X is funded, in parts, by a Starting Grant from the European Research Council (ERC; grant agreement No. 639889, PI: Kraus) and builds on earlier investments from the University of Michigan and the National Science Foundation (NSF, PI: Monnier). This research has made use of the Jean-Marie Mariotti Center OIFits Explorer service (http://www.jmmc.fr/oifitsexplorer)

    MIRC-X: a highly-sensitive six telescope interferometric imager at the CHARA Array

    Get PDF
    MIRC-X (Michigan InfraRed Combiner-eXeter) is a new highly-sensitive six-telescope interferometric imager installed at the CHARA Array that provides an angular resolution equivalent of up to a 330 m diameter baseline telescope in J and H band wavelengths (λ2B∼0.6\tfrac{\lambda}{2B}\sim0.6 milli-arcseconds). We upgraded the original MIRC (Michigan InfraRed Combiner) instrument to improve sensitivity and wavelength coverage in two phases. First, a revolutionary sub-electron noise and fast-frame rate C-RED ONE camera based on a SAPHIRA detector was installed. Second, a new-generation beam combiner was designed and commissioned to (i) maximize sensitivity, (ii) extend the wavelength coverage to J-band, and (iii) enable polarization observations. A low-latency and fast-frame rate control software enables high-efficiency observations and fringe tracking for the forthcoming instruments at CHARA Array. Since mid-2017, MIRC-X has been offered to the community and has demonstrated best-case H-band sensitivity down to 8.2 correlated magnitude. MIRC-X uses single-mode fibers to coherently combine light of six telescopes simultaneously with an image-plane combination scheme and delivers a visibility precision better than 1%, and closure phase precision better than 1∘1^\circ. MIRC-X aims at (i) imaging protoplanetary disks, (ii) detecting exoplanets with precise astrometry, and (iii) imaging stellar surfaces and star-spots at an unprecedented angular resolution in the near-infrared. In this paper, we present the instrument design, installation, operation, and on-sky results, and demonstrate the imaging and astrometric capability of MIRC-X on the binary system ι\iota Peg. The purpose of this paper is to provide a solid reference for studies based on MIRC-X data and to inspire future instruments in optical interferometry.Comment: 31 pages, 29 figures, accepted for publication in The Astronomical Journa

    The Small Separation A-star Companion Population: First Results with CHARA/MIRC-X

    Get PDF
    This is the final version. Available on open access from the American Astronomical Society via the DOI in this recordWe present preliminary results from our long-baseline interferometry (LBI) survey to constrain the multiplicity properties of intermediate-mass A-type stars within 80 pc. Previous multiplicity studies of nearby stars exhibit orbital separation distributions well fitted with a lognormal with peaks >15 au, increasing with primary mass. The A-star multiplicity survey of De Rosa et al., sensitive beyond 30 au but incomplete below 100 au, found a lognormal peak around 390 au. Radial velocity surveys of slowly rotating, chemically peculiar Am stars identified a significant number of very close companions with periods ≤5 days, ∼0.1 au, a result similar to surveys of O- and B-type primaries. With the improved performance of LBI techniques, we can probe these close separations for normal A-type stars where other surveys are incomplete. Our initial sample consists of 27 A-type primaries with estimated masses between 1.44 and 2.49 M ⊙ and ages 10-790 Myr, which we observed with the MIRC-X instrument at the CHARA Array. We use the open-source software CANDID to detect five companions, three of which are new, and derive a companion frequency of 0.19 − 0.06 + 0.11 over mass ratios of 0.25-1.0 and projected separations of 0.288-5.481 au. We find a probability of 10−6 that our results are consistent with extrapolations based on previous models of the A-star companion population over the mass ratios and separations sampled. Our results show the need to explore these very close separations to inform our understanding of stellar formation and evolution processes.European Research Council (ERC

    MYSTIC: a high angular resolution K-band imager at CHARA

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation 2022, 17 - 22 July 2022, Montreal, CanadaThe Michigan Young STar Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the United States National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA array in July 2021, with baselines up to 331 meters, MYSTIC provides a maximum angular resolution of λ/2B ∼ 0.7 mas. The instrument injects phase corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC utilizes a high frame rate, ultra-low read noise SAPHIRA detector, and implements two beam combiners: a 6-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a 4-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J+H band) instrument for simultaneous fringe-tracking and imaging, and shares its software suite with the latter to allow a single observer to operate both instruments. Herein, we present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.National Science Foundation (NSF)European Union Horizon 2020NASAEuropean Research Council (ERC)Science and Technology Facilities Council (STFC

    A new frontier for J-band interferometry: Dual-band NIR interferometry with MIRC-X

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation conference 2020. Online OnlyIn this contribution we report on our work to increase the spectral range of the Michigan Infrared Combiner- eXeter (MIRC-X) instrument at the CHARA array to allow for dual H and J band interferometric observations. We comment on the key science drivers behind this project and the methods of characterisation and correction of instrumental birefringence and dispersion. In addition, we report on the first results from on-sky commissioning in November 2019.Science and Technology Facilities Council (STFC)European Research Council (ERC)NASANational Science Foundation (NSF

    The first dynamical mass determination of a nitrogen-rich Wolf-Rayet star using a combined visual and spectroscopic orbit

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordWe present the first visual orbit for the nitrogen-rich Wolf-Rayet binary, WR 133 (WN5o + O9I), based on observations made with the CHARA Array and the MIRC-X combiner. This orbit represents the first visual orbit for a WN star and only the third Wolf-Rayet star with a visual orbit. The orbit has a period of 112.8 days, a moderate eccentricity of 0.36, and a separation of a = 0.79 mas on the sky. We combine the visual orbit with an SB2 orbit and Gaia parallax to find that the derived masses of the component stars are MWR = 9.3 ±1.6M⊙ and MO = 22.6 ±3.2M⊙, with the large errors owing to the nearly face-on geometry of the system combined with errors in the spectroscopic parameters. We also derive an orbital parallax that is identical to the Gaia-determined distance. We present a preliminary spectral analysis and atmosphere models of the component stars, and find the mass-loss rate in agreement with polarization variability and our orbit. However, the derived masses are low compared to the spectral types and spectral model. Given the close binary nature, we suspect that WR 133 should have formed through binary interactions, and represents an ideal target for testing evolutionary models given its membership in the cluster NGC 6871.National Science FoundationNOAO community access programEuropean Union Horizon 2020European Research Council (ERC)Science and Technology Facilities Council (STFC)NAS
    corecore