7,938 research outputs found
Globular Cluster Formation in the Virgo Cluster
Metal poor globular clusters (MPGCs) are a unique probe of the early
universe, in particular the reionization era. Systems of globular clusters in
galaxy clusters are particularly interesting as it is in the progenitors of
galaxy clusters that the earliest reionizing sources first formed. Although the
exact physical origin of globular clusters is still debated, it is generally
admitted that globular clusters form in early, rare dark matter peaks (Moore et
al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the
Virgo cluster globular cluster system by identifying the present day globular
cluster system with exactly such early, rare dark matter peaks. A popular
hypothesis is that that the observed truncation of blue metal poor globular
cluster formation is due to reionization (Spitler et al. 2012; Boley et al.
2009; Brodie & Strader 2006); adopting this view, constraining the formation
epoch of MPGCs provides a complementary constraint on the epoch of
reionization. By analyzing both the line of sight velocity dispersion and the
surface density distribution of the present day distribution we are able to
constrain the redshift and mass of the dark matter peaks. We find and quantify
a dependence on the chosen line of sight of these quantities, whose strength
varies with redshift, and coupled with star formation efficiency arguments find
a best fitting formation mass and redshift of and . We predict intracluster MPGCs in
the Virgo cluster. Our results confirm the techniques pioneered by Moore et al.
(2006) when applied to the the Virgo cluster and extend and refine the analytic
results of Spitler et al. (2012) numerically.Comment: 13 Pages, 13 Figures, submitted to MNRA
Analysis of a single-fold deployable truss beam preloaded by extension of selected face diagonal members
A technique for preloading a deployable box truss beam by extension of one face diagonal per bay was studied to determine if it would result in uniform loading of truss joints without causing excessive truss deformations. Results indicate that it is possible to accomplish uniform loading in the beam region way from beam boundaries, whereas in the regions near boundaries the member loading becomes non-uniform with magnitudes greater than those in the uniform load region. Also, the type of deformation which results in the beam depends on the pattern of preloaded members
Testing the LCDM model (and more) with the time evolution of the redshift
With the many ambitious proposals afoot for new generations of very large
telescopes, along with spectrographs of unprecedented resolution, there arises
the real possibility that the time evolution of the cosmological redshift may,
in the not too distant future, prove to be a useful tool rather than merely a
theoretical curiosity. Here I contrast this approach with the standard
cosmological procedure based on the luminosity (or any other well-defined)
distance. I then show that such observations would not only provide a direct
measure of all the associated cosmological parameters of the LCDM model, but
would also provide wide-ranging internal consistency checks. Further, in a more
general context, I show that without introducing further time derivatives of
the redshift one could in fact map out the dark energy equation of state should
the LCDM model fail. A consideration of brane-world scenarios and interacting
dark energy models serves to emphasize the fact that the usefulness of such
observations would not be restricted to high redshifts.Comment: In final form as to appear in Physical Review D. 12 pages 6 figure
Gravitational Collapse of Dust with a Cosmological Constant
The recent analysis of Markovic and Shapiro on the effect of a cosmological
constant on the evolution of a spherically symmetric homogeneous dust ball is
extended to include the inhomogeneous and degenerate cases. The histories are
shown by way of effective potential and Penrose-Carter diagrams.Comment: 2 pages, 2 figures (png), revtex. To appear in Phys. Rev.
Junctions and thin shells in general relativity using computer algebra I: The Darmois-Israel Formalism
We present the GRjunction package which allows boundary surfaces and
thin-shells in general relativity to be studied with a computer algebra system.
Implementing the Darmois-Israel thin shell formalism requires a careful
selection of definitions and algorithms to ensure that results are generated in
a straight-forward way. We have used the package to correctly reproduce a wide
variety of examples from the literature. We present several of these
verifications as a means of demonstrating the packages capabilities. We then
use GRjunction to perform a new calculation - joining two Kerr solutions with
differing masses and angular momenta along a thin shell in the slow rotation
limit.Comment: Minor LaTeX error corrected. GRjunction for GRTensorII is available
from http://astro.queensu.ca/~grtensor/GRjunction.htm
A preliminary investigation of finite-element modeling for composite rotor blades
The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness
Konsep Ruang dalam dan Ruang Luar Arsitektur Tradisional Suku Atoni di Kampung Tamkesi di Pulau Timor
:This research focuses on the concept of the traditional architectural space. The concept isassured to convey local theories for the contribution of an enduring planning which stays for a longperiod in other words; sustainable. This research will analyze the outcome of a hundredth yearstraditional architecture (settlement) which is said comprises a high architecure‟s value even untillnow. The measurement used will be based on the paradigm elaboration of Schulz phenomenologyand Salura Ordering Principles Theory. However the purpose of this research is to create a deepcomprehension (verstehen) about the culture of adaptation in Atony tribe community at TamkesiVillage and to find the concept along with the relation between interior and exterior of theirtraditional settlement architecture. So the result showed that the enviroment relationship, siting,form, figure, and the cycles of nature-culture influenced by the concept of top-down hierarchy andthe presence of a binder (datum) which supported by specific concept: (1) governance-governancetribes of gender, (2) ethnic fraternity, (3) obidience traditions, cultural symbol, spiritual, and (4)the fused-with-nature concept. In short, this concept will makes the custom settlement architectureof Tamkesi Village can continue to survive untill today
- …
