1,484 research outputs found

    Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating

    Full text link
    Impurity particle transport in an ion cyclotron resonance heated Alcator C-Mod discharge is studied with local gyrokinetic simulations and a theoretical model including the effect of poloidal asymmetries and elongation. In spite of the strong minority temperature anisotropy in the deep core region, the poloidal asymmetries are found to have a negligible effect on the turbulent impurity transport due to low magnetic shear in this region, in agreement with the experimental observations. According to the theoretical model, in outer core regions poloidal asymmetries may contribute to the reduction of the impurity peaking, but uncertainties in atomic physics processes prevent quantitative comparison with experiments.Comment: 32 pages, 12 figure

    Estimating Fire Background Temperature at a Geostationary Scale-An Evaluation of Contextual Methods for AHI-8

    Get PDF
    An integral part of any remotely sensed fire detection and attribution method is an estimation of the target pixels background temperature. This temperature cannot be measured directly independent of fire radiation, so indirect methods must be used to create an estimate of this background value. The most commonly used method of background temperature estimation is through derivation from the surrounding obscuration-free pixels available in the same image, in a contextual estimation process. This method of contextual estimation performs well in cloud-free conditions and in areas with homogeneous landscape characteristics, but increasingly complex sets of rules are required when contextual coverage is not optimal. The effects of alterations to the search radius and sample size on the accuracy of contextually derived brightness temperature are heretofore unexplored. This study makes use of imagery from the AHI-8 geostationary satellite to examine contextual estimators for deriving background temperature, at a range of contextual window sizes and percentages of valid contextual information. Results show that while contextual estimation provides accurate temperatures for pixels with no contextual obscuration, significant deterioration of results occurs when even a small portion of the target pixels surroundings are obscured. To maintain the temperature estimation accuracy, the use of no less than 65% of a target pixels total contextual coverage is recommended. The study also examines the use of expanding window sizes and their effect on temperature estimation. Results show that the accuracy of temperature estimation decreases significantly when expanding the examined window, with a 50% increase in temperature variability when using a larger window size than 5×5 pixels, whilst generally providing limited gains in the total number of temperature estimates (between 0.4%4.4% of all pixels examined). The work also presents a number of case study regions taken from the AH

    Perpendicular momentum injection by lower hybrid wave in a tokamak

    Full text link
    The injection of lower hybrid waves for current drive into a tokamak affects the profile of intrinsic rotation. In this article, the momentum deposition by the lower hybrid wave on the electrons is studied. Due to the increase in the poloidal momentum of the wave as it propagates into the tokamak, the parallel momentum of the wave increases considerably. The change of the perpendicular momentum of the wave is such that the toroidal angular momentum of the wave is conserved. If the perpendicular momentum transfer via electron Landau damping is ignored, the transfer of the toroidal angular momentum to the plasma will be larger than the injected toroidal angular momentum. A proper quasilinear treatment proves that both perpendicular and parallel momentum are transferred to the electrons. The toroidal angular momentum of the electrons is then transferred to the ions via different mechanisms for the parallel and perpendicular momentum. The perpendicular momentum is transferred to ions through an outward radial electron pinch, while the parallel momentum is transferred through collisions.Comment: 22 pages, 4 figure

    The effects of main-ion dilution on turbulence in low q95 C-Mod ohmic plasmas, and comparisons with nonlinear GYRO

    Get PDF
    Recent experiments on C-mod seeding nitrogen into ohmic plasmas with [subscript q]95 = 3.4 found that the seeding greatly reduced long-wavelength (ITG-scale) turbulence. The long-wavelength turbulence that was reduced by the nitrogen seeding was localized to the region of r/a≈0.85, where the turbulence is well above marginal stability (as evidenced by Q[subscript i]/Q[subscript GB]≫1). The nonlinear gyrokinetic code GYRO was used to simulate the expected turbulence in these plasmas, and the simulated turbulent density fluctuations and turbulent energy fluxes quantitatively agreed with the experimental measurements both before and after the nitrogen seeding. Unexpectedly, the intrinsic rotation of the plasma was also found to be affected by the nitrogen seeding, in a manner apparently unrelated to a change in the electron-ion collisionality that was proposed by other experiments.United States. Dept. of Energy. Office of Fusion Energy Sciences (Award E-FG02-94-ER54235

    Reading aloud boosts connectivity through the putamen

    Get PDF
    Functional neuroimaging and lesion studies have frequently reported thalamic and putamen activation during reading and speech production. However, it is currently unknown how activity in these structures interacts with that in other reading and speech production areas. This study investigates how reading aloud modulates the neuronal interactions between visual recognition and articulatory areas, when both the putamen and thalamus are explicitly included. Using dynamic causal modeling in skilled readers who were reading regularly spelled English words, we compared 27 possible pathways that might connect the ventral anterior occipito-temporal sulcus (aOT) to articulatory areas in the precentral cortex (PrC). We focused on whether the neuronal interactions within these pathways were increased by reading relative to picture naming and other visual and articulatory control conditions. The results provide strong evidence that reading boosts the aOT–PrC pathway via the putamen but not the thalamus. However, the putamen pathway was not exclusive because there was also evidence for another reading pathway that did not involve either the putamen or the thalamus. We conclude that the putamen plays a special role in reading but this is likely to vary with individual reading preferences and strategies

    Assessment of a field-aligned ICRF antenna

    Get PDF
    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.United States. Dept. of Energy (DOE award DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Energy Postdoctoral Research Program administered by ORISE

    Operation of Alcator C-Mod with high-Z plasma facing components and implications

    Full text link
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
    corecore