1,129 research outputs found

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    Get PDF
    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array

    Robust Online Hamiltonian Learning

    Get PDF
    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay β\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=−0.11966±0.00089−0.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=−1.27590−0.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    First direct constraints on Fierz interference in free neutron β\beta decay

    Full text link
    Precision measurements of free neutron β\beta-decay have been used to precisely constrain our understanding of the weak interaction. However the neutron Fierz interference term bnb_n, which is particularly sensitive to Beyond-Standard-Model tensor currents at the TeV scale, has thus far eluded measurement. Here we report the first direct constraints on this term, finding bn=0.067±0.005stat−0.061+0.090sysb_n = 0.067 \pm 0.005_{\text{stat}} {}^{+0.090}_{- 0.061}{}_{\text{sys}}, consistent with the Standard Model. The uncertainty is dominated by absolute energy reconstruction and the linearity of the beta spectrometer energy response
    • …
    corecore