321 research outputs found

    Electric buses in England and Sweden – Overcoming barriers to introduction

    Get PDF
    Electric buses can improve the environmental performance of public transport. Yet, introducing electric buses brings novel challenges, such as requirements for operational changes, new forms of institutional collaboration, increased investment costs and technological concerns. This paper investigates these challenges and strategies for managing them by comparing experiences of electric bus implementation in English and Swedish cities. The comparative approach enabled us to understand the influence of governance context, organisational practices and relations between stakeholders. The comparison shows that experiences by involved stakeholders are highly context dependant. Financial and regulatory support from the national government, along with passenger demand and route characteristics had significant influence on the implementation. However, the relationship between stakeholders involved and the division of responsibility emerged as central factors to overcome challenges – the most important being the development of functioning collaboration between the stakeholders

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    The Sound of Sonoluminescence

    Full text link
    We consider an air bubble in water under conditions of single bubble sonoluminescence (SBSL) and evaluate the emitted sound field nonperturbatively for subsonic gas-liquid interface motion. Sound emission being the dominant damping mechanism, we also implement the nonperturbative sound damping in the Rayleigh-Plesset equation for the interface motion. We evaluate numerically the sound pulse emitted during bubble collapse and compare the nonperturbative and perturbative results, showing that the usual perturbative description leads to an overestimate of the maximal surface velocity and maximal sound pressure. The radius vs. time relation for a full SBSL cycle remains deceptively unaffected.Comment: 25 pages; LaTex and 6 attached ps figure files. Accepted for publication in Physical Review

    Theory of quantum radiation observed as sonoluminescence

    Get PDF
    Sonoluminescence is explained in terms of quantum radiation by moving interfaces between media of different polarizability. In a stationary dielectric the zero-point fluctuations of the electromagnetic field excite virtual two-photon states which become real under perturbation due to motion of the dielectric. The sonoluminescent bubble is modelled as an optically empty cavity in a homogeneous dielectric. The problem of the photon emission by a cavity of time-dependent radius is handled in a Hamiltonian formalism which is dealt with perturbatively up to first order in the velocity of the bubble surface over the speed of light. A parameter-dependence of the zero-order Hamiltonian in addition to the first-order perturbation calls for a new perturbative method combining standard perturbation theory with an adiabatic approximation. In this way the transition amplitude from the vacuum into a two-photon state is obtained, and expressions for the single-photon spectrum and the total energy radiated during one flash are given both in full and in the short-wavelengths approximation when the bubble is larger than the wavelengths of the emitted light. It is shown analytically that the spectral density has the same frequency-dependence as black-body radiation; this is purely an effect of correlated quantum fluctuations at zero temperature. The present theory clarifies a number of hitherto unsolved problems and suggests explanations for several more. Possible experiments that discriminate this from other theories of sonoluminescence are proposed.Comment: Latex file, 28 pages, postscript file with 3 figs. attache

    Effects of Bulk Viscosity in Non-linear Bubble Dynamics

    Full text link
    The non-linear bubble dynamics equations in a compressible liquid have been modified considering the effects of compressibility of both the liquid and the gas at the bubble interface. A new bubble boundary equation has been derived, which includes a new term resulted from the liquid bulk viscosity effects. The influence of this term has been numerically investigated considering the effects of water vapor and chemical reactions on the bubble evolution. The results clearly indicate that the new term has an important damping role at the collapse, so that its consideration decreases the amplitude of the bubble rebounds after the collapse. This damping feature is more remarkable for higher deriving pressures.Comment: 4 pages, 7 figure

    Assortative Mating between European Corn Borer Pheromone Races: Beyond Assortative Meeting

    Get PDF
    BACKGROUND: Sex pheromone communication systems may be a major force driving moth speciation by causing behavioral reproductive isolation via assortative meeting of conspecific individuals. The 'E' and 'Z' pheromone races of the European corn borer (ECB) are a textbook example in this respect. 'Z' females produce and 'Z' males preferentially respond to a 'Z' pheromone blend, while the 'E' race communicates via an 'E' blend. Both races do not freely hybridize in nature and their populations are genetically differentiated. A straightforward explanation would be that their reproductive isolation is a mere consequence of "assortative meeting" resulting from their different pheromones specifically attracting males towards same-race females at long range. However, previous laboratory experiments and those performed here show that even when moths are paired in a small box - i.e., when the meeting between sexual partners is forced - inter-race couples still have a lower mating success than intra-race ones. Hence, either the difference in attractivity of E vs. Z pheromones for males of either race still holds at short distance or the reproductive isolation between E and Z moths may not only be favoured by assortative meeting, but must also result from an additional mechanism ensuring significant assortative mating at close range. Here, we test whether this close-range mechanism is linked to the E/Z female sex pheromone communication system. METHODOLOGY/PRINCIPAL FINDINGS: Using crosses and backcrosses of E and Z strains, we found no difference in mating success between full-sisters emitting different sex pheromones. Conversely, the mating success of females with identical pheromone types but different coefficients of relatedness to the two parental strains was significantly different, and was higher when their genetic background was closer to that of their male partner's pheromone race. CONCLUSIONS/SIGNIFICANCE: We conclude that the close-range mechanism ensuring assortative mating between the E and Z ECB pheromone races is unrelated to the difference in female sex pheromone. Although the nature of this mechanism remains elusive, our results show that it is expressed in females, acts at close range, segregates independently of the autosome carrying Pher and of both sex chromosomes, and is widely distributed since it occurs both in France and in the US

    Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance

    Full text link
    We theoretically study the influence of the noise strength on the excitation of the Brillouin propagation modes in a dissipative optical lattice. We show that the excitation has a resonant behavior for a specific amount of noise corresponding to the precise synchronization of the Hamiltonian motion on the optical potential surfaces and the dissipative effects associated with optical pumping in the lattice. This corresponds to the phenomenon of stochastic resonance. Our results are obtained by numerical simulations and correspond to the analysis of microscopic quantities (atomic spatial distributions) as well as macroscopic quantities (enhancement of spatial diffusion and pump-probe spectra). We also present a simple analytical model in excellent agreement with the simulations
    • …
    corecore