753 research outputs found
Monte-Carlo methods for NLTE spectral synthesis of supernovae
We present JEKYLL, a new code for modelling of supernova (SN) spectra and
lightcurves based on Monte-Carlo (MC) techniques for the radiative transfer.
The code assumes spherical symmetry, homologous expansion and steady state for
the matter, but is otherwise capable of solving the time-dependent radiative
transfer problem in non-local-thermodynamic-equilibrium (NLTE). The method used
was introduced in a series of papers by Lucy, but the full time-dependent NLTE
capabilities of it have never been tested. Here, we have extended the method to
include non-thermal excitation and ionization as well as charge-transfer and
two-photon processes. Based on earlier work, the non-thermal rates are
calculated by solving the Spencer-Fano equation. Using a method previously
developed for the SUMO code, macroscopic mixing of the material is taken into
account in a statistical sense. In addition, a statistical Markov-chain model
is used to sample the emission frequency, and we introduce a method to control
the sampling of the radiation field. Except for a description of JEKYLL, we
provide comparisons with the ARTIS, SUMO and CMFGEN codes, which show good
agreement in the calculated spectra as well as the state of the gas. In
particular, the comparison with CMFGEN, which is similar in terms of physics
but uses a different technique, shows that the Lucy method does indeed converge
in the time-dependent NLTE case. Finally, as an example of the time-dependent
NLTE capabilities of JEKYLL, we present a model of a Type IIb SN, taken from a
set of models presented and discussed in detail in an accompanying paper. Based
on this model we investigate the effects of NLTE, in particular those arising
from non-thermal excitation and ionization, and find strong effects even on the
bolometric lightcurve. This highlights the need for full NLTE calculations when
simulating the spectra and lightcurves of SNe.Comment: Accepted for publication by Astronomy & Astrophysic
No trace of a single-degenerate companion in late spectra of SNe 2011fe and 2014J
Left-over, ablated material from a possible non-degenerate companion can
reveal itself after about one year in spectra of Type Ia SNe (SNe Ia). We have
searched for such material in spectra of SN 2011fe (at 294 days after the
explosion) and for SN 2014J (315 days past explosion). The observations are
compared with numerical models simulating the expected line emission. The
spectral lines sought for are H-alpha, [O I] 6300 and [Ca II] 7291,7324, and
the expected width of these lines is about 1000 km/s. No signs of these lines
can be traced in any of the two supernovae. When systematic uncertainties are
included, the limits on hydrogen-rich ablated gas in SNe 2011fe and 2014J are
0.003 M_sun and 0.0085 M_sun, respectively, where the limit for SN 2014J is the
second lowest ever, and the limit for SN 2011fe is a revision of a previous
limit. Limits are also put on helium-rich ablated gas. These limits are used,
in conjunction with other data, to argue that these supernovae can stem from
double-degenerate systems, or from single-degenerate systems with a spun
up/spun down super-Chandrasekhar white dwarf. For SN 2011fe, other types of
hydrogen-rich donors can likely be ruled out, whereas for SN 2014J a
main-sequence donor system with large intrinsic separation is still possible.
Helium-rich donor systems cannot be ruled out for any of the two supernovae,
but the expected short delay time for such progenitors makes this possibility
less likely, especially for SN 2011fe. The broad [Ni II] 7378 emission in SN
2014J is redshifted by about +1300 km/s, as opposed to the known blueshift of
roughly -1100 km/s for SN 2011fe. [Fe II] 7155 is also redshifted in SN 2014J.
SN 2014J belongs to a minority of SNe Ia that both have a nebular redshift of
[Fe II] 7155 and [Ni II] 7378, and a slow decline of the Si II 6355 absorption
trough just after B-band maximum.Comment: 13 pages, submitted to A&
CFD study of oil-jet gear interaction flow phenomena in spur gears
Oil-jet lubrication and cooling of high-speed gears is frequently employed in aeronautical systems, such as novel high-bypass civil aero engines based on the geared turbofan technology. Using such oil-jet system, practitioners aim to achieve high cooling rates on the flanks of the highly thermally loaded gears with minimum oil usage. Thus, for an optimal design, detailed knowledge about the flow processes is desired. These involve the oil exiting the nozzle, the oil impacting on the gear teeth, the oil spreading on the flanks, the subsequent oil fling-off, as well as the effect of the design parameters on the oil flow. Better understanding of these processes will improve the nozzle design phase, e.g. regarding the nozzle positioning and orientation, as well as the nozzle sizing and operation.
Most related studies focus on the impingement depth to characterize the two-phase flow. However, the level of information of this scalar value is rather low for a complete description of the highly dynamic three-dimensional flow. Motivated by the advancements in numerical methods and the computational resources available nowadays, the investigation of the oil-jet gear interaction by means of computational fluid dynamics (CFD) has come into focus lately.
In this work, a numerical setup based on the volume-of-fluid method is presented and employed to investigate the two-phase flow phenomena occurring in the vicinity of the gear teeth. The setup consists of a single oil-jet impinging on a single rotating spur gear. By introducing new metrics for characterizing the flow phenomena, extensive use of the possibilities of modern CFD is made, allowing a detailed transient and spatially resolved flow analysis. Thus, not only the impingement depth, but also the temporal and spatial evolution of wetted areas on the gear flanks, as well as the evolution of the oil volume in contact with the gear flanks are extracted from the simulation data and compared in a CFD study.
The study consists of 21 different simulation cases, whereby the effect of varying the jet velocity, the jet inclination angle, the jet diameter, and the gear speed are examined. Consistent results compared to a simplified analytical approach for the impinging depth are obtained and the results for the newly introduced metrics are presented
The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?
iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN
2002es, is the first SN Ia for which a strong UV flash was observed in the
early-time light curves. This has been interpreted as evidence for a
single-degenerate (SD) progenitor system where such a signal is expected from
interactions between the SN ejecta and the non-degenerate companion star. Here,
we compare synthetic observables of multi-dimensional state-of-the-art
explosion models for different progenitor scenarios to the light curves and
spectra of iPTF14atg. From our models, we have difficulties explaining the
spectral evolution of iPTF14atg within the SD progenitor channel. In contrast,
we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and
0.76 solar masses, respectively, provides an excellent match to the spectral
evolution of iPTF14atg from 10d before to several weeks after maximum light.
Our merger model does not naturally explain the initial UV flash of iPTF14atg.
We discuss several possibilities like interactions of the SN ejecta with the
circum-stellar medium and surface radioactivity from a He ignited merger that
may be able to account for the early UV emission in violent merger models.Comment: 12 pages, 7 figures, accepted for publication in MNRA
Heat Transfer by Impingement Cooling of Spur Gears
Lower specific fuel consumption as well as noise reduction are the main goals in the sector of civilaeronautics engineering nowadays. One prominent concept of achieving these goals is the gearedturbofan engine, in which a planetary gear box is installed between the low pressure spool and thefan. This allows the low pressure turbine as well as the fan to rotate at optimum speeds. This way, thesame power can be generated by fewer stages in the faster rotating turbine, which in turn compensatesthe additional weight of the gear box. The main advantage of the geared turbofan is the possibilityto further increase the fan diameter and therefore improve the propulsion efficiency by means of ahigher bypass ratio. One crucial feature of the gear box is the cooling system needed to ensure safeoperating conditions during all phases of the flight envelope. For an efficient cooling system, optimizedwith respect to weight and cost, the heat transfer between the cooling fluid and the gears needs tobe understood thoroughly. In this study, the impingement cooling of spur gears by oil jets is forthe first time examined analytically and compared to experimental results. This provides knowledgeabout the evolution of the heat transfer coefficient distribution resulting from the cooling fluid flowrate and the gear speed, as well as a deep understanding of the underlying phenomena causing thisbehavior. The analytical solution process comprises of two calculation steps. First, the size of the oilfilm is calculated and secondly, the heat transfer across this surface is evaluated while the oil film isflung off the tooth flank by centrifugal forces. The parameters varied in this study were the oil flowrate, the rotational speed of the spur gear and the oil jet angle. The theoretical results are in goodagreement with the experimental data. The theoretical approach can therefore be applied as a newand efficient tool to estimate the global heat transfer coefficient of impingement cooled spur gears.Furthermore, the validated tool can be used as boundary condition for thermal models of spur gearsand help optimize the impingement cooling oil systems
Effectiveness of physiotherapy and costs in patients with clinical signs of shoulder impingement syndrome: One-year follow-up of a randomized controlled trial
Objectives: To investigate the effect of manual physiotherapy and exercises compared with exercises alone in patients with shoulder impingement syndrome one year after inclusion. Design: Randomized controlled trial. Subjects: Patients with shoulder impingement of more than 4 weeks. Methods: The intervention group received individualized manual physiotherapy plus individualized exercises; the control group received individualized exercises only. Both groups had 10 treatments over 5 weeks; afterwards all patients continued their exercises for another 7 weeks at home. Primary outcomes were the Shoulder Pain and Disability Index and Patients' Global Impression of Change. The Generic Patient-Specific Scale was used as secondary outcome. Costs were recorded in a log-book. Results: Ninety patients were included in the study and 87 could be analyzed at 1-year follow-up. Both groups showed significant improvements in all outcome measures, but no difference was detected between the groups. Only costs differed significantly in favour of the control group (p=0.03) after 5 weeks. Conclusion: Individualized exercises resulted in lower costs than manual physiotherapy and showed a significant effect on pain and functioning within the whole group after one year. Exercises should therefore be considered as a basic treatment. Due to the progressive improvement that occurred during the follow-up period with individualized exercises further treatments should be delayed for 3 to 4 months
Novice teachers\u27 experiences of community service-learning
This study focuses on beginning teachers\u27 experiences with a currently popular curriculum strategy in the US: community service-learning. To determine the personal and contextual factors influencing novice teachers\u27 experiences, we surveyed over 300 early career teachers and interviewed 30 of the larger sample. The study provides evidence that some beginning teachers are willing to implement strategies they learned in their teacher education programs, and can do so successfully, in spite of being busy and unsupported. Results indicate that specific preparation features and school characteristics may play a large role in whether novice teachers implement service-learning activities in their classrooms
The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova
We present ten medium-resolution, high signal-to-noise ratio near-infrared
(NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility
(IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained
as part of the Carnegie Supernova Project. This data set constitutes the
earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the
first spectrum obtained at 2.58 days past the explosion and covering -14.6 to
+17.3 days relative to B-band maximum. C I {\lambda}1.0693 {\mu}m is detected
in SN 2011fe with increasing strength up to maximum light. The delay in the
onset of the NIR C I line demonstrates its potential to be an effective tracer
of unprocessed material. For the first time in a SN Ia, the early rapid decline
of the Mg II {\lambda}1.0927 {\mu}m velocity was observed, and the subsequent
velocity is remarkably constant. The Mg II velocity during this constant phase
locates the inner edge of carbon burning and probes the conditions under which
the transition from deflagration to detonation occurs. We show that the Mg II
velocity does not correlate with the optical light-curve decline rate
{\Delta}m15. The prominent break at ~1.5 {\mu}m is the main source of concern
for NIR k-correction calculations. We demonstrate here that the feature has a
uniform time evolution among SNe Ia, with the flux ratio across the break
strongly correlated with {\Delta}m15. The predictability of the strength and
the onset of this feature suggests that the associated k-correction
uncertainties can be minimized with improved spectral templates.Comment: 14 pages, 13 figures, accepted for publication in Ap
Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with M~0.9 M_sun
Type Ia supernovae (SNe Ia) are thought to result from thermonuclear
explosions of carbon-oxygen white dwarf stars. Existing models generally
explain the observed properties, with the exception of the sub-luminous
1991-bg-like supernovae. It has long been suspected that the merger of two
white dwarfs could give rise to a type Ia event, but hitherto simulations have
failed to produce an explosion. Here we report a simulation of the merger of
two equal-mass white dwarfs that leads to an underluminous explosion, though at
the expense of requiring a single common-envelope phase, and component masses
of ~0.9 M_sun. The light curve is too broad, but the synthesized spectra, red
colour and low expansion velocities are all close to what is observed for
sub-luminous 1991bg-like events. While mass ratios can be slightly less than
one and still produce an underluminous event, the masses have to be in the
range 0.83-0.9 M_sun.Comment: Accepted to Natur
- …