60 research outputs found

    The Impact of Context on EEG Motor Imagery Neurofeedback and Related Motor Domains

    Get PDF
    Neurofeedback (NF) is a versatile non-invasive neuromodulation technique. In combination with motor imagery (MI), NF has considerable potential for enhancing motor performance or supplementing motor rehabilitation. However, not all users achieve reliable NF control. While research has focused on various brain signal properties and the optimisation of signal processing to solve this issue, the impact of context, i.e. the conditions in which NF motor tasks occur, is comparatively unknown. We review current research on the impact of context on MI NF and related motor domains. We identify long-term factors that act at the level of the individual or of the intervention, and short-term factors, with levels before/after and during a session. The reviewed literature indicates that context plays a significant role. We propose considering context factors as well as within-level and across-level interactions when studying MI NF

    Event-related desynchronization in motor imagery with EEG neurofeedback in the context of declarative interference and sleep

    Get PDF
    Motor imagery (MI) in combination with neurofeedback (NF) is a promising supplement to facilitate the acquisition of motor abilities and the recovery of impaired motor abilities following brain injuries. However, the ability to control MI NF is subject to a wide range of inter-individual variability. A substantial number of users experience difficulties in achieving good results, which compromises their chances to benefit from MI NF in a learning or rehabilitation context. It has been suggested that context factors, that is, factors outside the actual motor task, can explain individual differences in motor skill acquisition. Retrospective declarative interference and sleep have already been identified as critical factors for motor execution (ME) and MI based practice. Here, we investigate whether these findings generalize to practicing MI NF. Three groups underwent three blocks of practicing MI with NF, each on two subsequent days. In two of the groups, MI NF blocks were followed by either immediate or delayed declarative memory tasks. The control group performed only MI NF and no specific interference tasks. Two of the MI NF blocks were run on the first day of the experiment, the third in the morning of the second day. Significant within-block NF gains in mu and beta frequency event-related desynchronization (ERD) where evident for all groups. However, data did not provide evidence for an impact of immediate or delayed declarative interference on MI NF ERD. Also, MI NF ERD remained unchanged after a night of sleep. We did not observe the expected pattern of results for MI NF ERD with regard to declarative interference and a night of sleep. This is discussed in the context of variable experimental task designs, inter-individual differences, and performance measures

    Good vibrations, bad vibrations: Oscillatory brain activity in the attentional blink

    Get PDF
    The attentional blink (AB) is a deficit in reporting the second (T2) of two targets (T1, T2) when presented in close temporal succession and within a stream of distractor stimuli. The AB has received a great deal of attention in the past two decades because it allows to study the mechanisms that influence the rate and depth of information processing in various setups and therefore provides an elegant way to study correlates of conscious perception in supra-threshold stimuli. Recently evidence has accumulated suggesting that oscillatory signals play a significant role in temporally coordinating information between brain areas. This review focuses on studies looking into oscillatory brain activity in the AB. The results of these studies indicate that the AB is related to modulations in oscillatory brain activity in the theta, alpha, beta, and gamma frequency bands. These modulations are sometimes restricted to a circumscribed brain area but more frequently include several brain regions. They occur before targets are presented as well as after the presentation of the targets. We will argue that the complexity of the findings supports the idea that the AB is not the result of a processing impairment in one particular process or brain area, but the consequence of a dynamic interplay between several processes and/or parts of a neural network

    Implicit Temporal Expectation Attenuates Auditory Attentional Blink

    Get PDF
    Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB

    Competing Neural Responses for Auditory and Visual Decisions

    Get PDF
    Why is it hard to divide attention between dissimilar activities, such as reading and listening to a conversation? We used functional magnetic resonance imaging (fMRI) to study interference between simple auditory and visual decisions, independently of motor competition. Overlapping activity for auditory and visual tasks performed in isolation was found in lateral prefrontal regions, middle temporal cortex and parietal cortex. When the visual stimulus occurred during the processing of the tone, its activation in prefrontal and middle temporal cortex was suppressed. Additionally, reduced activity was seen in modality-specific visual cortex. These results paralleled impaired awareness of the visual event. Even without competing motor responses, a simple auditory decision interferes with visual processing on different neural levels, including prefrontal cortex, middle temporal cortex and visual regions

    Explicit attention interferes with selective emotion processing in human extrastriate cortex

    Get PDF
    BACKGROUND: Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (~150–300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. RESULTS: Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. CONCLUSION: The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon

    Quick Minds Slowed Down: Effects of Rotation and Stimulus Category on the Attentional Blink

    Get PDF
    BACKGROUND: Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the 'attentional blink' (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions. METHODOLOGY/PRINCIPAL FINDINGS: Here we present behavioral and electrophysiological evidence suggesting that these 'non-blinkers' can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3). CONCLUSION/SIGNIFICANCE: These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome

    Target Cueing Provides Support for Target- and Resource-Based Models of the Attentional Blink

    Get PDF
    The attentional blink (AB) describes a time-based deficit in processing the second of two masked targets. The AB is attenuated if successive targets appear between the first and final target, or if a cueing target is positioned before the final target. Using various speeds of stimulus presentation, the current study employed successive targets and cueing targets to confirm and extend an understanding of target-target cueing in the AB. In Experiment 1, three targets were presented sequentially at rates of 30 msec/item or 90 msec/item. Successive targets presented at 90 msec improved performance compared with non-successive targets. However, accuracy was equivalently high for successive and non-successive targets presented at 30 msec/item, suggesting that–regardless of whether they occurred consecutively–those items fell within the temporally defined attentional window initiated by the first target. Using four different presentation speeds, Experiment 2 confirmed the time-based definition of the AB and the success of target-cueing at 30 msec/item. This experiment additionally revealed that cueing was most effective when resources were not devoted to the cue, thereby implicating capacity limitations in the AB. Across both experiments, a novel order-error measure suggested that errors tend to decrease with an increasing duration between the targets, but also revealed that certain stimulus conditions result in stable order accuracy. Overall, the results are best encapsulated by target-based and resource-sharing theories of the AB, which collectively value the contributions of capacity limitations and optimizing transient attention in time

    The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates

    Cardio-visual full body illusion alters bodily self-consciousness and tactile processing in somatosensory cortex.

    Get PDF
    Prominent theories highlight the importance of bodily perception for self-consciousness, but it is currently not known whether this is based on interoceptive or exteroceptive signals or on integrated signals from these anatomically distinct systems, nor where in the brain such integration might occur. To investigate this, we measured brain activity during the recently described ‘cardio-visual full body illusion’ which combines interoceptive and exteroceptive signals, by providing participants with visual exteroceptive information about their heartbeat in the form of a periodically illuminated silhouette outlining a video image of the participant’s body and flashing in synchrony with their heartbeat. We found, as also reported previously, that synchronous cardio-visual signals increased self-identification with the virtual body. Here we further investigated whether experimental changes in self-consciousness during this illusion are accompanied by activity changes in somatosensory cortex by recording somatosensory evoked potentials (SEPs). We show that a late somatosensory evoked potential component (P45) reflects the illusory self-identification with a virtual body. These data demonstrate that interoceptive and exteroceptive signals can be combined to modulate activity in parietal somatosensory cortex
    corecore