62 research outputs found

    The institutional and social construction of responsible investment

    Get PDF
    This paper provides a summary of the symposium on the institutional and social construction of Responsible Investment (RI), held at the 22nd IABS Conference. In the context of the symposium, we propose to move beyond the dominant focus on the financial impact of RI to consider the potential of emergent institutional and sociological perspectives to explain the practices and concepts related to RI. In doing so, our aim is to explore in greater detail the current changes in the RI infrastructure and the impact of these changes on wider issues of corporate sustainability and social responsibility

    Active inference, sensory attenuation and illusions.

    Get PDF
    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference and impaired movement--like schizophrenia and Parkinsonism--syndromes that implicate abnormal modulatory neurotransmission

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Perceptual and decisional attenuation of tactile perception during the preparation of self- versus externally-generated movements.

    No full text
    We investigated tactile perception during the execution of self- versus externally-generated movements. In a first experiment, we established the temporal characteristics of the movements of interest. In a second experiment, participants had to try to detect a short gap in an otherwise continuous vibratory stimulus delivered to their right wrist under conditions of rest, throwing (i.e., self-initiated movement), or catching a basketball (i.e., externally-generated movement). Our hypothesis was that different patterns of tactile sensitivity (d') and response bias (criteria c and c') would be observed as a function of the timing of gap delivery (i.e., during movement preparation or movement execution) and the type of movement (self- or externally-generated). A third experiment investigated tactile perception at rest while participants adopted different hand postures. This experiment also tested the simple preparation of the self-/externally-generated movements versus the observation of these targeted movements as performed by the experimenter. Due to sensory suppression, participants were significantly less sensitive in detecting the gap in tactile stimulation while executing the movement. Preparing to catch the ball only triggered a shift in response bias (i.e., participants were more liberal/conservative when reporting the gap in stimulation), but no change in perceptual sensitivity was observed, as compared to rest. Preparing to make a ball-throwing movement resulted in a significant decrement in tactile sensitivity, as well as a shift in participants' criterion toward their being more conservative, when responding to the presence of the target. Similar decrements were observed for the observation of self-initiated movement preparation, but not for the observation of their externally-generated counterparts. Taken together, these results demonstrate that different forms of attenuation influence tactile perception, depending on the type of movement that is executed: perceptual and decisional attenuation for self-initiated movements, but only decisional attenuation for externally-generated movements. These results suggest that the movement preparation sensorimotor contingencies are already modulated in prefrontal decision-related cortical brain areas

    Juggling reveals a decisional component to tactile suppression.

    No full text
    Goal-directed movements are characterized by sensory suppression, that is, by decreased sensitivity to tactile stimuli. In the present study, we investigated tactile suppression during movement using a complex motor task: basic 3-ball juggling. It was hypothesized that a decrease in tactile sensitivity would be observed, together with a shift in participants' response bias while juggling. In a first experiment, participants had to detect a short gap in an otherwise continuous vibratory stimulus, which was delivered to their wrist under conditions of rest or else while juggling. In a second experiment, participants detected a short time gap in a continuous auditory signal, under the same conditions. In a final control experiment performed at rest, participants detected a short time gap in an auditory or tactile signal. In an additional condition, the detection of a gap in tactile stimulation was required under conditions of intramodal tactile interference. Participants were significantly less sensitive to detect a gap in tactile stimulation whilst juggling. Most importantly, these results were paired with a significant shift toward participants adopting a more conservative criterion when responding to the presence of the gap (i.e. they were more likely to say that a gap was not present). Taken together, these results demonstrate movement-related tactile sensory suppression and point to a decisional component in tactile suppression, thus suggesting that tactile suppression could already be triggered in the brain ahead of the motor command

    Assessing the impact of finings on the perception of beer

    No full text
    In recent years, a number of commentators have suggested that the use of finings to clarify beer can impair the flavour, because of the removal of key volatile aromatic molecules from the drink. However, are such claims necessarily correct? Unaware of any previous attempt to address this question empirically, we conducted both a blind and a sighted taste test. The test made use of two beers from the same batch, one made using finings and the other made without. In neither experiment did the use of finings affect flavour or liking ratings amongst the social drinkers (N = 235) tested. Thus, the present results clearly suggest that the use of finings does not necessarily impact either the sensory-discriminative or hedonic ratings of beer, despite its influence on the clarity of the finished product

    Attention and suppression affect tactile perception in reach-to-grasp movements.

    No full text
    Reaching with the hand is characterized by a decrease in sensitivity to tactile stimuli presented to the moving hand. Here, we investigated whether tactile suppression can be canceled by attentional orienting. In a first experiment, participants performed a dual-task involving a goal-directed movement paired with the speeded detection of a tactile pulse. The pulse was either delivered to the moving or stationary hand, during movement preparation, execution, or the post-movement phase. Furthermore, stimulation was delivered with equal probability to either hand, or with a higher probability to either the moving or resting hand. The results highlighted faster RTs under conditions of higher probability of stimulation delivery to both moving and resting hands, thus indicating an attentional effect. For the motor preparation period, RTs were faster only at the resting hand under conditions where tactile stimulation was more likely to be delivered there. In a second experiment, a non-speeded perceptual task was used as a secondary task and tactile discrimination thresholds were recorded. Tactile stimulation was delivered concomitantly at both index fingers either in the movement preparation period (both before and after the selection of the movement effector had taken place), in the motor execution period, or, in a control condition, in the time-window of motor execution, but the movement of the hand was restrained. In the preparation period, tactile thresholds were comparable for the two timings of stimulation delivery; i.e., before and after the selection of the movement effector had taken place. These results therefore suggest that shortly prior to, and during, the execution of goal-directed movements, a combined facilitatory and inhibitory influence acts on tactile perception

    Tactile suppression in goal-directed movement

    No full text
    Sharing numerous characteristics with suppression in the other senses, tactile suppression is a reliable phenomenon that accompanies movement. By investigating the simplest of movements (e.g., finger flexions), early research tried to explain the origins of the phenomenon in terms of motor command generation together with sensory reafference. Here, we review recent research that has delved into (naturalistic) goal-directed movements. In connection with goal-directed movement, tactile suppression is evident as a decrease in behavioural performance measured shortly prior to, and during, movement execution. It is also reflected in a consistent response bias highlighting the (perceptual) uncertainty of the movement. Goal-directed movement supports the forward model and establishes agency and contextual influencesas the defining influences on tactile suppression.Depending on the task at hand, people prioritize a certain percept during movement. Future research, we argue, should focus on studying naturalistic movements, or sequences of movements, that share a common meaning or goal
    corecore