53 research outputs found

    Simulation of a fully coupled 3D glacial isostatic adjustment – ice sheet model for the Antarctic ice sheet over a glacial cycle

    Get PDF
    Glacial isostatic adjustment (GIA) has a stabilizing effect on the evolution of the Antarctic ice sheet by reducing the grounding line migration following ice melt. The timescale and strength of this feedback depends on the spatially varying viscosity of the Earth's mantle. Most studies assume a relatively long and laterally homogenous response time of the bedrock. However, the mantle viscosity is spatially variable, with a high mantle viscosity beneath East Antarctica and a low mantle viscosity beneath West Antarctica. For this study, we have developed a new method to couple a 3D GIA model and an ice sheet model to study the interaction between the solid Earth and the Antarctic ice sheet during the last glacial cycle. With this method, the ice sheet model and GIA model exchange ice thickness and bedrock elevation during a fully coupled transient experiment. The feedback effect is taken into account with a high temporal resolution, where the coupling time steps between the ice sheet and GIA model are 5000 years over the glaciation phase and vary between 500 and 1000 years over the deglaciation phase of the last glacial cycle. During each coupling time step, the bedrock elevation is adjusted at every ice sheet model time step, and the deformation is computed for a linearly changing ice load. We applied the method using the ice sheet model ANICE and a 3D GIA finite element model. We used results from a regional seismic model for Antarctica embedded in the global seismic model SMEAN2 to determine the patterns in the mantle viscosity. The results of simulations over the last glacial cycle show that differences in mantle viscosity of an order of magnitude can lead to differences in the grounding line position up to 700 km and to differences in ice thickness of the order of 2 km for the present day near the Ross Embayment. These results underline and quantify the importance of including local GIA feedback effects in ice sheet models when simulating the Antarctic ice sheet evolution over the last glacial cycle.</p

    Sea-level rise: from global perspectives to local services

    Full text link
    Coastal areas are highly diverse, ecologically rich, regions of key socio-economic activity, and are particularly sensitive to sea-level change. Over most of the 20th century, global mean sea level has risen mainly due to warming and subsequent expansion of the upper ocean layers as well as the melting of glaciers and ice caps. Over the last three decades, increased mass loss of the Greenland and Antarctic ice sheets has also started to contribute significantly to contemporary sea-level rise. The future mass loss of the two ice sheets, which combined represent a sea-level rise potential of ∼65 m, constitutes the main source of uncertainty in long-term (centennial to millennial) sea-level rise projections. Improved knowledge of the magnitude and rate of future sea-level change is therefore of utmost importance. Moreover, sea level does not change uniformly across the globe and can differ greatly at both regional and local scales. The most appropriate and feasible sea level mitigation and adaptation measures in coastal regions strongly depend on local land use and associated risk aversion. Here, we advocate that addressing the problem of future sea-level rise and its impacts requires (i) bringing together a transdisciplinary scientific community, from climate and cryospheric scientists to coastal impact specialists, and (ii) interacting closely and iteratively with users and local stakeholders to co-design and co-build coastal climate services, including addressing the high-end risks

    Treatment of cyclic vomiting syndrome with co-enzyme Q10 and amitriptyline, a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclic vomiting syndrome (CVS), which is defined by recurrent stereotypical episodes of nausea and vomiting, is a relatively-common disabling condition that is associated with migraine headache and mitochondrial dysfunction. Co-enzyme Q10 (Co-Q) is a nutritional supplement that has demonstrated efficacy in pediatric and adult migraine. It is increasingly used in CVS despite the complete lack of studies to demonstrate its value in treatment</p> <p>Methods</p> <p>Using an Internet-based survey filled out by subjects with CVS or their parents, the efficacy, tolerability and subject satisfaction in CVS prophylaxis were queried. Subjects taking Co-Q (22 subjects) were compared against those taking amitriptyline (162 subjects), which is the general standard-of-care.</p> <p>Results</p> <p>Subjects/parents reported similar levels of efficacy for a variety of episode parameters (frequency, duration, number of emesis, nausea severity). There was a 50% reduction in at least one of those four parameters in 72% of subjects treated with amitriptyline and 68% of subjects treated Co-Q. However, while no side effects were reported on Co-Q, 50% of subjects on amitriptyline reported side effects (P = 5 × 10<sup>-7</sup>), resulting in 21% discontinuing treatment (P = 0.007). Subjects/parents considered the benefits to outweigh the risks of treatment in 47% of cases on amitriptyline and 77% of cases on Co-Q (P = 0.008).</p> <p>Conclusion</p> <p>Our data suggest that the natural food supplement Co-Q is potentially efficacious and tolerable in the treatment of CVS, and should be considered as an option in CVS prophylaxis. Our data would likely be helpful in the design of a double-blind clinical trial.</p

    Sea-level rise: From global perspectives to local services

    Get PDF
    Coastal areas are highly diverse, ecologically rich, regions of key socio-economic activity, and are particularly sensitive to sea-level change. Over most of the 20th century, global mean sea level has risen mainly due to warming and subsequent expansion of the upper ocean layers as well as the melting of glaciers and ice caps. Over the last three decades, increased mass loss of the Greenland and Antarctic ice sheets has also started to contribute significantly to contemporary sea-level rise. The future mass loss of the two ice sheets, which combined represent a sea-level rise potential of ∼65 m, constitutes the main source of uncertainty in long-term (centennial to millennial) sea-level rise projections. Improved knowledge of the magnitude and rate of future sea-level change is therefore of utmost importance. Moreover, sea level does not change uniformly across the globe and can differ greatly at both regional and local scales. The most appropriate and feasible sea level mitigation and adaptation measures in coastal regions strongly depend on local land use and associated risk aversion. Here, we advocate that addressing the problem of future sea-level rise and its impacts requires (i) bringing together a transdisciplinary scientific community, from climate and cryospheric scientists to coastal impact specialists, and (ii) interacting closely and iteratively with users and local stakeholders to co-design and co-build coastal climate services, including addressing the high-end risks
    corecore