50 research outputs found

    Sea-level rise: from global perspectives to local services

    Full text link
    Coastal areas are highly diverse, ecologically rich, regions of key socio-economic activity, and are particularly sensitive to sea-level change. Over most of the 20th century, global mean sea level has risen mainly due to warming and subsequent expansion of the upper ocean layers as well as the melting of glaciers and ice caps. Over the last three decades, increased mass loss of the Greenland and Antarctic ice sheets has also started to contribute significantly to contemporary sea-level rise. The future mass loss of the two ice sheets, which combined represent a sea-level rise potential of ∼65 m, constitutes the main source of uncertainty in long-term (centennial to millennial) sea-level rise projections. Improved knowledge of the magnitude and rate of future sea-level change is therefore of utmost importance. Moreover, sea level does not change uniformly across the globe and can differ greatly at both regional and local scales. The most appropriate and feasible sea level mitigation and adaptation measures in coastal regions strongly depend on local land use and associated risk aversion. Here, we advocate that addressing the problem of future sea-level rise and its impacts requires (i) bringing together a transdisciplinary scientific community, from climate and cryospheric scientists to coastal impact specialists, and (ii) interacting closely and iteratively with users and local stakeholders to co-design and co-build coastal climate services, including addressing the high-end risks

    Treatment of cyclic vomiting syndrome with co-enzyme Q10 and amitriptyline, a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyclic vomiting syndrome (CVS), which is defined by recurrent stereotypical episodes of nausea and vomiting, is a relatively-common disabling condition that is associated with migraine headache and mitochondrial dysfunction. Co-enzyme Q10 (Co-Q) is a nutritional supplement that has demonstrated efficacy in pediatric and adult migraine. It is increasingly used in CVS despite the complete lack of studies to demonstrate its value in treatment</p> <p>Methods</p> <p>Using an Internet-based survey filled out by subjects with CVS or their parents, the efficacy, tolerability and subject satisfaction in CVS prophylaxis were queried. Subjects taking Co-Q (22 subjects) were compared against those taking amitriptyline (162 subjects), which is the general standard-of-care.</p> <p>Results</p> <p>Subjects/parents reported similar levels of efficacy for a variety of episode parameters (frequency, duration, number of emesis, nausea severity). There was a 50% reduction in at least one of those four parameters in 72% of subjects treated with amitriptyline and 68% of subjects treated Co-Q. However, while no side effects were reported on Co-Q, 50% of subjects on amitriptyline reported side effects (P = 5 × 10<sup>-7</sup>), resulting in 21% discontinuing treatment (P = 0.007). Subjects/parents considered the benefits to outweigh the risks of treatment in 47% of cases on amitriptyline and 77% of cases on Co-Q (P = 0.008).</p> <p>Conclusion</p> <p>Our data suggest that the natural food supplement Co-Q is potentially efficacious and tolerable in the treatment of CVS, and should be considered as an option in CVS prophylaxis. Our data would likely be helpful in the design of a double-blind clinical trial.</p

    Sea-level rise: From global perspectives to local services

    Get PDF
    Coastal areas are highly diverse, ecologically rich, regions of key socio-economic activity, and are particularly sensitive to sea-level change. Over most of the 20th century, global mean sea level has risen mainly due to warming and subsequent expansion of the upper ocean layers as well as the melting of glaciers and ice caps. Over the last three decades, increased mass loss of the Greenland and Antarctic ice sheets has also started to contribute significantly to contemporary sea-level rise. The future mass loss of the two ice sheets, which combined represent a sea-level rise potential of ∼65 m, constitutes the main source of uncertainty in long-term (centennial to millennial) sea-level rise projections. Improved knowledge of the magnitude and rate of future sea-level change is therefore of utmost importance. Moreover, sea level does not change uniformly across the globe and can differ greatly at both regional and local scales. The most appropriate and feasible sea level mitigation and adaptation measures in coastal regions strongly depend on local land use and associated risk aversion. Here, we advocate that addressing the problem of future sea-level rise and its impacts requires (i) bringing together a transdisciplinary scientific community, from climate and cryospheric scientists to coastal impact specialists, and (ii) interacting closely and iteratively with users and local stakeholders to co-design and co-build coastal climate services, including addressing the high-end risks
    corecore