209 research outputs found

    Phytochemical analysis of methanolic extract of Ulva rigida C.Ag. collected from Koothankuzhi Coast, Tirunelveli district, Tamil Nadu, India

    Get PDF
    The present study was concentrated to explore the phytochemicals present in the methanolic extract of Ulva rigida C.Ag., collected from Koothankuzhi in the south east coast of Tamil Nadu, India.  The phytochemical analysis of methanolic extract was screened using the standard procedure for UV-Visible spectroscopic, HPLC and FTIR. The UV-Visible spectrum showed the compounds separated at the nm of 662, 603, 533 and 400 with the absorption 0.653, 0.331, 0.458 and 2.684 respectively. The qualitative HPLC fingerprint profile displayed fourteen compounds at different retention time of 1.770min, 2.230min, 2.540min, 2.870min, 3.090min, 3.377min, 3.900min, 4.257min, 4.797min, 5.340min, 5.853min, 6.520min, 7.730min and 9.220min. The result of FTIR analysis was found the presence of functional groups such as alkynes, sulfonic acids, carboxylic acids, carboxylic acid salt, aldehydes, aliphatic and unsaturated hydrocarbons. Keywords: Ulva rigida, UV-Visible, HPLC, FTI

    Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    Get PDF
    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect

    Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants

    Get PDF
    We have developed a new, simple, quick and genotype-independent method for direct regeneration of sugarcane using novel midrib segment explants. Our protocol involves two steps: the pretreatment of starting material on MS (Murashige and Skoog (1962) Physiol Plant 15:473–497) medium containing 3.0 mg/l 2,4- dichlorophenoxyacetic acid (2,4-D) for 8 days under continuous dark and subsequent transfer of the explants to MS medium augmented with 0.1 mg/l benzyladenine (BA) and 0.1 mg/l naphthaleneacetic acid (NAA) under light-dark conditions. On the regeneration medium, numerous globular structures appeared from the explants and subsequently differentiated into shoots. Regenerated shoots attained 2–5 cm height within 30 days of culture initiation and readily rooted on MS basal medium. Hardened plants were successfully established in the greenhouse. The regulation of sugarcane morphogenesis by auxin pretreatment is discussed

    PDFR and CRY Signaling Converge in a Subset of Clock Neurons to Modulate the Amplitude and Phase of Circadian Behavior in Drosophila

    Get PDF
    Background: To synchronize their molecular rhythms, circadian pacemaker neurons must input both external and internal timing cues and, therefore, signal integration between sensory information and internal clock status is fundamental to normal circadian physiology. Methodology/Principal Findings: We demonstrate the specific convergence of clock-derived neuropeptide signaling with that of a deep brain photoreceptor. We report that the neuropeptide PDF receptor and the circadian photoreceptor CRYPTOCROME (CRY) are precisely co-expressed in a subset of pacemakers, and that these pathways together provide a requisite drive for circadian control of daily locomotor rhythms. These convergent signaling pathways influence the phase of rhythm generation, but also its amplitude. In the absence of both pathways, PER rhythms were greatly reduced in only those specific pacemakers that receive convergent inputs and PER levels remained high in the nucleus throughout the day. This suggested a large-scale dis-regulation of the pacemaking machinery. Behavioral rhythms were likewise disrupted: in light:dark conditions they were aberrant, and under constant dark conditions, they were lost. Conclusions/Significance: We speculate that the convergence of environmental and clock-derived signals may produce

    The Clock Input to the First Optic Neuropil of Drosophila melanogaster Expressing Neuronal Circadian Plasticity

    Get PDF
    In the first optic neuropil (lamina) of the fly's visual system, two interneurons, L1 and L2 monopolar cells, and epithelial glial cells show circadian rhythms in morphological plasticity. These rhythms depend on clock gene period (per) and cryptochrome (cry) expression. In the present study, we found that rhythms in the lamina of Drosophila melanogaster may be regulated by circadian clock neurons in the brain since the lamina is invaded by one neurite extending from ventral lateral neurons; the so-called pacemaker neurons. These neurons and the projection to the lamina were visualized by green fluorescent protein (GFP). GFP reporter gene expression was driven by the cry promotor in cry-GAL4/UAS-GFP transgenic lines. We observed that the neuron projecting to the lamina forms arborizations of varicose fibers in the distal lamina. These varicose fibers do not form synaptic contacts with the lamina cells and are immunoreactive to the antisera raised against a specific region of Schistocerca gregaria ion transport peptide (ITP). ITP released in a paracrine way in the lamina cortex, may regulate the swelling and shrinking rhythms of the lamina monopolar cells and the glia by controlling the transport of ions and fluids across cell membranes at particular times of the day

    dyschronic, a Drosophila Homolog of a Deaf-Blindness Gene, Regulates Circadian Output and Slowpoke Channels

    Get PDF
    Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc). dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO), an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein–protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system

    Recruitment of a SAP18-HDAC1 Complex into HIV-1 Virions and Its Requirement for Viral Replication

    Get PDF
    HIV-1 integrase (IN) is a virally encoded protein required for integration of viral cDNA into host chromosomes. INI1/hSNF5 is a component of the SWI/SNF complex that interacts with HIV-1 IN, is selectively incorporated into HIV-1 (but not other retroviral) virions, and modulates multiple steps, including particle production and infectivity. To gain further insight into the role of INI1 in HIV-1 replication, we screened for INI1-interacting proteins using the yeast two-hybrid system. We found that SAP18 (Sin3a associated protein 18 kD), a component of the Sin3a-HDAC1 complex, directly binds to INI1 in yeast, in vitro and in vivo. Interestingly, we found that IN also binds to SAP18 in vitro and in vivo. SAP18 and components of a Sin3A-HDAC1 complex were specifically incorporated into HIV-1 (but not SIV and HTLV-1) virions in an HIV-1 IN–dependent manner. Using a fluorescence-based assay, we found that HIV-1 (but not SIV) virion preparations harbour significant deacetylase activity, indicating the specific recruitment of catalytically active HDAC into the virions. To determine the requirement of virion-associated HDAC1 to HIV-1 replication, an inactive, transdominant negative mutant of HDAC1 (HDAC1H141A) was utilized. Incorporation of HDAC1H141A decreased the virion-associated histone deacetylase activity. Furthermore, incorporation of HDAC1H141A decreased the infectivity of HIV-1 (but not SIV) virions. The block in infectivity due to virion-associated HDAC1H141A occurred specifically at the early reverse transcription stage, while entry of the virions was unaffected. RNA-interference mediated knock-down of HDAC1 in producer cells resulted in decreased virion-associated HDAC1 activity and a reduction in infectivity of these virions. These studies indicate that HIV-1 IN and INI1/hSNF5 bind SAP18 and selectively recruit components of Sin3a-HDAC1 complex into HIV-1 virions. Furthermore, HIV-1 virion-associated HDAC1 is required for efficient early post-entry events, indicating a novel role for HDAC1 during HIV-1 replication
    corecore