721 research outputs found

    Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. II. Charge separation processes

    Get PDF
    A new approach to carry out molecular dynamics simulations of chemical reactions in solution using combined density functional theory/molecular mechanics potentials is presented. We focus our attention on the analysis of reactive trajectories, dynamic solvent effects and transmission coefficient rather than on the evaluation of free energy which is another important topic that will be examined elsewhere. In a previous paper we have described the generalities of this hybrid molecular dynamics method and it has been employed to investigate low energy barrier proton transfer process in water. The study of processes with activation energies larger than a few kT requires the use of specific techniques adapted to “rare events” simulations. We describe here a method that consists in the simulation of short trajectories starting from an equilibrated transition state in solution, the structure of which has been approximately established. This calculation is particularly efficient when carried out with parallel computers since the study of a reactive process is decomposed in a set of short time trajectories that are completely independent. The procedure is close to that used by other authors in the context of classical molecular dynamics but present the advantage of describing the chemical system with rigorous quantum mechanical calculations. It is illustrated through the study of the first reaction step in electrophilic bromination of ethylene in water. This elementary process is representative of many charge separation reactions for which static and dynamic solvent effects play a fundamental [email protected]

    Forced Stratified Turbulence: Successive Transitions with Reynolds Number

    Full text link
    Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.Comment: 8 pages, 5 figures (submitted to Phys. Rev. E

    Amelogenin Nanoparticles in Suspension: Deviations from Spherical Shape and pH-Dependent Aggregation

    Get PDF
    It is well-known that amelogenin self-assembles to form nanoparticles, usually referred to as amelogenin nanospheres, despite the fact that not much is known about their actual shape in solution. In the current paper, we combine SAXS and DLS to study the three-dimensional shape of the recombinant amelogenins rP172 and rM179. Our results show for the first time that amelogenins build oblate nanoparticles in suspension using experimental approaches that do not require the proteins to be in contact with a support material surface. The SAXS studies give evidence for the existence of isolated amelogenin nano-oblates with aspect ratios in the range of 0.45-0.5 at pH values higher than pH 7.2 and show an aggregation of these nano-oblates at lower pH values. The role of the observed oblate shape in the formation of chain-like structures at physiological conditions is discussed as a key factor in the biomineralization of dental enamel

    Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study

    Get PDF
    We use lattice Boltzmann simulations, in conjunction with Ewald summation methods, to investigate the role of hydrodynamic interactions in colloidal suspensions of dipolar particles, such as ferrofluids. Our work addresses volume fractions ϕ\phi of up to 0.20 and dimensionless dipolar interaction parameters λ\lambda of up to 8. We compare quantitatively with Brownian dynamics simulations, in which many-body hydrodynamic interactions are absent. Monte Carlo data are also used to check the accuracy of static properties measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic interactions slow down both the long-time and the short-time decays of the intermediate scattering function S(q,t)S(q,t), for wavevectors close to the peak of the static structure factor S(q)S(q), by a factor of roughly two. The long-time slowing is diminished at high interaction strengths whereas the short-time slowing (quantified via the hydrodynamic factor H(q)H(q)) is less affected by the dipolar interactions, despite their strong effect on the pair distribution function arising from cluster formation. Cluster formation is also studied in transient data following a quench from λ=0\lambda = 0; hydrodynamic interactions slow the formation rate, again by a factor of roughly two

    The New ‘Hidden Abode’: Reflections on Value and Labour in the New Economy

    Get PDF
    In a pivotal section of Capital, volume 1, Marx (1976: 279) notes that, in order to understand the capitalist production of value, we must descend into the ‘hidden abode of production’: the site of the labour process conducted within an employment relationship. In this paper we argue that by remaining wedded to an analysis of labour that is confined to the employment relationship, Labour Process Theory (LPT) has missed a fundamental shift in the location of value production in contemporary capitalism. We examine this shift through the work of Autonomist Marxists like Hardt and Negri, Lazaratto and Arvidsson, who offer theoretical leverage to prize open a new ‘hidden abode’ outside employment, for example in the ‘production of organization’ and in consumption. Although they can open up this new ‘hidden abode’, without LPT's fine-grained analysis of control/resistance, indeterminacy and structured antagonism, these theorists risk succumbing to empirically naive claims about the ‘new economy’. Through developing an expanded conception of a ‘new hidden abode’ of production, the paper demarcates an analytical space in which both LPT and Autonomist Marxism can expand and develop their understanding of labour and value production in today's economy. </jats:p

    Attachment, infidelity, and loneliness in college students involved in a romantic relationship: the role of relationship satisfaction, morbidity and prayer for partner

    Get PDF
    This study examined the mediating effects of relationship satisfaction, prayer for a partner, and morbidity in the relationship between attachment and loneliness, infidelity and loneliness, and psychological morbidity and loneliness, in college students involved in a romantic relationship. Participants were students in an introductory course on family development. This study examined only students (n = 345) who were involved in a romantic relationship. The average age of participants was 19.46 (SD = 1.92) and 25 % were males. Short-form UCLA Loneliness Scale (ULS-8), (Hays and DiMatteo in J Pers Assess 51:69–81, doi:10.1207/s15327752jpa5101_6, 1987); Relationship Satisfaction Scale (Funk and Rogge in J Fam Psychol 21:572–583, doi:10.1037/0893-3200.21.4.572, 2007); Rotterdam Symptom Checklist (De Haes et al. in Measuring the quality of life of cancer patients with the Rotterdam Symptom Checklist (RSCL): a manual, Northern Centre for Healthcare Research, Groningen, 1996); Prayer for Partner Scale, (Fincham et al. in J Pers Soc Psychol 99:649–659, doi:10.1037/a0019628, 2010); Infidelity Scale, (Drigotas et al. in J Pers Soc Psychol 77:509–524, doi:10.1037/0022-3514.77.3.509, 1999); and the Experiences in Close Relationship Scale-short form (Wei et al. in J Couns Psychol 52(4):602–614, doi:10.1037/0022-0167.52.4.602, 2005). Results showed that relationship satisfaction mediated the relationship between avoidance attachment and loneliness and between infidelity and loneliness. Physical morbidity mediated the relationship between anxious attachment and psychological morbidity. Psychological morbidity mediated the relationship between anxious attachment and physical morbidity. The present results expand the literature on attachment by presenting evidence that anxious and avoidant partners experience loneliness differently. Implications for couple’s therapy are addressed. Future research should replicate these results with older samples and married couples.Acknowledgments This research was supported by Grant Number 90FE0022 from the United States Department of Health and Human Services awarded to the last author

    AFM study of morphology and mechanical properties of a chimeric 2 spider silk and bone sialoprotein protein for bone regeneration

    Get PDF
    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6merĂŸBSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6merĂŸBSP, and control films consisting of only the silk component (6mer). The behavior of the 6merĂŸBSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2ĂŸ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.Silvia Games thanks the Foundation for Science and Technology (FCT) for supporting her Ph.D. grant, SFRH/BD/28603/2006. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the Chimera project (PTDC/EBB-EBI/109093/2008) funded by the FCT agency, the NIH (P41 EB002520) Tissue Engineering Resource Center, and the NIH (EB003210 and DE017207)
    • 

    corecore