503 research outputs found

    Improving Atmospheric Angular Momentum Forecasts by Machine Learning

    Get PDF
    Earth angular momentum forecasts are naturally accompanied by forecast errors that typically grow with increasing forecast length. In contrast to this behavior, we have detected large quasi-periodic deviations between atmospheric angular momentum wind term forecasts and their subsequently available analysis. The respective errors are not random and have some hard to define yet clearly visible characteristics which may help to separate them from the true forecast information. These kinds of problems, which should be automated but involve some adaptation and decision-making in the process, are most suitable for machine learning methods. Consequently, we propose and apply a neural network to the task of removing the detected artificial forecast errors. We found that a cascading forward neural network model performed best in this problem. A total error reduction with respect to the unaltered forecasts amounts to about 30% integrated over a 6-days forecast period. Integrated over the initial 3-days forecast period, in which the largest artificial errors are present, the improvements amount to about 50%. After the application of the neural network, the remaining error distribution shows the expected growth with forecast length. However, a 24-hourly modulation and an initial baseline error of 2 × 10−8 became evident that were hidden before under the larger forecast error

    Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor

    Get PDF
    AbstractThe thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9± 1 ÎČ-carotene (Car), 2.9±0.8 plastoquinone 9 (PQ9) and 3.8±0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O2 released per 37–38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-Å, resulting in complete data sets of 3.2 Å resolution

    Estimating ocean tide model uncertainties for electromagnetic inversion studies

    Get PDF
    Over a decade ago the semidiurnal lunar M2 ocean tide was identified in CHAMP satellite magnetometer data. Since then and especially since the launch of the satellite mission Swarm, electromagnetic tidal observations from satellites are increasingly used to infer electric properties of the upper mantle. In most of these inversions, ocean tidal models are used to generate oceanic tidal electromagnetic signals via electromagnetic induction. The modeled signals are subsequently compared to the satellite observations. During the inversion, since the tidal models are considered error free, discrepancies between forward models and observations are projected only onto the induction part of the modeling, e.g., Earth's conductivity distribution. Our study analyzes uncertainties in oceanic tidal models from an electromagnetic point of view. Velocities from hydrodynamic and assimilative tidal models are converted into tidal electromagnetic signals and compared. Respective uncertainties are estimated. The studies main goal is to provide errors for electromagnetic inversion studies. At satellite height, the differences between the hydrodynamic tidal models are found to reach up to 2&thinsp;nT, i.e., over 100&thinsp;% of the local M2 signal. Assimilative tidal models show smaller differences of up to 0.1&thinsp;nT, which in some locations still corresponds to over 30&thinsp;% of the M2 signal.</p

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of ∌1200 km s−1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    Double-helix Wilson loops: case of two angular momenta

    Full text link
    Recently, Wilson loops with the shape of a double helix have played an important role in studying large spin operators in gauge theories. They correspond to a quark and an anti-quark moving in circles on an S3 (and therefore each of them describes a helix in RxS3). In this paper we consider the case where the particles have two angular momenta on the S3. The string solution corresponding to such Wilson loop can be found using the relation to the Neumann-Rosochatius system allowing the computation of the energy and angular momenta of the configuration. The particular case of only one angular momentum is also considered. It can be thought as an analytic continuation of the rotating strings which are dual to operators in the SL(2) sector of N=4 SYM.Comment: 30 pages, 2 figures, LaTeX. v2: Small corrections, reference adde

    Electromagnetic characteristics of ENSO

    Get PDF
    The motion of electrically conducting sea water through Earth's magnetic field induces secondary electromagnetic fields. Due to its periodicity, the oceanic tidally induced magnetic field is easily distinguishable in magnetic field measurements and therefore detectable. These tidally induced signatures in the electromagnetic fields are also sensitive to changes in oceanic temperature and salinity distributions. We investigate the impact of oceanic heat and salinity changes related to the El Niño–Southern Oscillation (ENSO) on oceanic tidally induced magnetic fields. Synthetic hydrographic data containing characteristic ENSO dynamics have been derived from a coupled ocean–atmosphere simulation covering a period of 50 years. The corresponding tidally induced magnetic signals have been calculated with the 3-D induction solver x3dg. By means of the Oceanic Niño Index (ONI), based on sea surface temperature anomalies, and a corresponding Magnetic Niño Index (MaNI), based on anomalies in the oceanic tidally induced magnetic field at sea level, we demonstrate that evidence of developing ENSO events can be found in the oceanic magnetic fields statistically 4 months earlier than in sea surface temperatures. The analysis of the spatio-temporal progression of the oceanic magnetic field anomalies offers a deeper understanding on the underlying oceanic processes and is used to test and validate the initial findings

    Use of controlled low dose gamma irradiation to sterilize allograft tendons for ACL reconstruction: biomechanical and clinical perspective

    Get PDF
    As reviewed here, numerous biomechanical and clinical studies support the use of controlled, low temperature irradiation of allograft tendons, to provide both excellent clinical results and medical-device grade sterile allografts with minimal risk of disease transmission

    An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment

    Full text link
    The ZEUS inclusive differential cross-section data from HERA, for charged and neutral current processes taken with e+ and e- beams, together with differential cross-section data on inclusive jet production in e+ p scattering and dijet production in \gamma p scattering, have been used in a new NLO QCD analysis to extract the parton distribution functions of the proton. The input of jet data constrains the gluon and allows an accurate extraction of \alpha_s(M_Z) at NLO; \alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model) An additional uncertainty from the choice of scales is estimated as \pm 0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at http://durpdg.dur.ac.uk/hepdata in LHAPDFv
    • 

    corecore