45 research outputs found

    Epigenetic Modifications of the α-Synuclein Gene and Relative Protein Content Are Affected by Ageing and Physical Exercise in Blood from Healthy Subjects

    Get PDF
    Epigenetic regulation may contribute to the beneficial effects of physical activity against age-related neurodegeneration. For example, epigenetic alterations of the gene encoding for α-synuclein (SNCA) have been widely explored in both brain and peripheral tissues of Parkinson’s disease samples. However, no data are currently available about the effects of physical exercise on SNCA epigenetic regulation in ageing healthy subjects. The present paper explored whether, in healthy individuals, age and physical activity are related to blood intron1-SNCA (SNCAI1) methylation, as well as further parameters linked to such epigenetic modification (total, oligomeric α-synuclein and DNA methyltransferase concentrations in the blood). Here, the SNCAI1 methylation status increased with ageing, and consistent with this result, low α-synuclein levels were found in the blood. The direct relationship between SNCAI1 methylation and α-synuclein levels was observed in samples characterized by blood α-synuclein concentrations of 76.3 ng/mg protein or lower (confidence interval (CI) = 95%). In this selected population, higher physical activity reduced the total and oligomeric α-synuclein levels. Taken together, our data shed light on ageing- and physical exercise-induced changes on the SNCA methylation status and protein levels of α-synuclein

    The 'full-blown' MRI of sudden hearing loss: 3D FLAIR in a patient with bilateral metastases in the internal auditory canals

    Get PDF
    We report a case of a 57-year-old man with bilateral masses in the internal auditory canal. The peculiar findings at magnetic resonance imaging with tridimensional fluid-attenuated inversion recovery sequence combined with clinical data provided new insights into understanding the pathophysiology of the hearing loss

    Impact of adenotonsillectomy on pediatric quality of life: review of the literature

    Get PDF
    Adenotonsillectomy (ADT) is one of the most widely used procedures in the treatment of paediatric recurrent acute tonsillitis (RAT) and obstructive sleep apnoea syndrome (OSAS), both of which have significant repercussions on the patients' quality of life (QoL). The purpose of our review of literature was to highlight the great variety of tools that are currently used to evaluate QoL in children, to examine data available on their efficacy and the feasibility of their use in daily clinical practice, and to determine possible limitations related to an indirect and subjective assessment of QoL in children. Although the use of different parameters makes it difficult to compare the published studies, an analysis of the evidence currently available in the literature suggests that ADT has a generally positive impact on the QoL (especially in case of OSAS). It also highlights the importance of combining tonsillectomy and adenoidectomy in the treatment of OSAS, and documents the comparability of tonsillectomy and tonsillotomy in improving obstructive symptoms. In conclusion, our findings suggest that literature supports that ADT is associated with positive changes in QOL; however further studies using comparable standardised criteria are necessary to confirm the size and duration of this benefit

    α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise

    Get PDF
    The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets

    Brain hemodynamic intermediate phenotype links Vitamin B12 to cognitive profile of healthy and mild cognitive impaired subjects

    Get PDF
    Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype.Vitamin B12, folate, and homocysteine are implicated in pivotal neurodegenerative mechanisms and partake in elders' mental decline. Findings on the association between vitamin-related biochemistry and cognitive abilities suggest that the structural and functional properties of the brain may represent an intermediate biomarker linking vitamin concentrations to cognition. Despite this, no previous study directly investigated whether vitamin B12, folate, and homocysteine levels are sufficient to explain individual neuropsychological profiles or, alternatively, whether the activity of brain regions modulated by these compounds better predicts cognition in elders. Here, we measured the relationship between vitamin blood concentrations, scores at seventeen neuropsychological tests, and brain activity of sixty-five elders spanning from normal to Mild Cognitive Impairment. We then evaluated whether task-related brain responses represent an intermediate phenotype, providing a better prediction of subjects' neuropsychological scores, as compared to the one obtained considering blood biochemistry only. We found that the hemodynamic activity of the right dorsal anterior cingulate cortex was positively associated (p value < 0 05 cluster corrected) with vitamin B12 concentrations, suggesting that elders with higher B12 levels had a more pronounced recruitment of this salience network region. Crucially, the activity of this area significantly predicted subjects' visual search and attention abilities (p value = 0 0023), whereas B12 levels per se failed to do so. Our results demonstrate that the relationship between blood biochemistry and elders' cognitive abilities is revealed when brain activity is included into the equation, thus highlighting the role of brain imaging as intermediate phenotype

    Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study

    Get PDF
    Age-related cognitive impairment and dementia are an increasing societal burden. Epidemiological studies indicate that lifestyle factors, e.g. physical, cognitive and social activities, correlate with reduced dementia risk; moreover, positive effects on cognition of physical/cognitive training have been found in cognitively unimpaired elders. Less is known about effectiveness and action mechanisms of physical/cognitive training in elders already suffering from Mild Cognitive Impairment (MCI), a population at high risk for dementia. We assessed in 113 MCI subjects aged 65-89 years, the efficacy of combined physical-cognitive training on cognitive decline, Gray Matter (GM) volume loss and Cerebral Blood Flow (CBF) in hippocampus and parahippocampal areas, and on brain-blood-oxygenation-level-dependent (BOLD) activity elicited by a cognitive task, measured by ADAS-Cog scale, Magnetic Resonance Imaging (MRI), Arterial Spin Labeling (ASL) and fMRI, respectively, before and after 7 months of training vs. usual life. Cognitive status significantly decreased in MCI-no training and significantly increased in MCI-training subjects; training increased parahippocampal CBF, but no effect on GM volume loss was evident; BOLD activity increase, indicative of neural efficiency decline, was found only in MCI-no training subjects. These results show that a non pharmacological, multicomponent intervention improves cognitive status and indicators of brain health in MCI subjects

    Molecular genetics and antisocial behavior: Where do we stand?

    No full text
    Over the last two decades, it has become increasingly evident that control of aggressive behavior is modulated by the individual genetic profile as well. Several candidate genes have been proposed to play a role in the risk to develop antisocial behavior, and distinct brain imaging studies have shown that specific cortical areas may be functionally and/or structurally impaired in impulsive violent subjects on the basis of their genotypes. In this paper, we review the findings regarding four polymorphisms-MAOA (Monoamine oxidase A) uVNTR, SLC6A4 (solute carrier family 6 (neurotransmitter transporter), member 4) 5HTTLPR, COMT (Catechol-O-methyltransferase) Val158Met and DRD4 (dopamine D4 receptor) VNTR 1-11-that all have been found to be associated with an increased vulnerability for antisocial and impulsive behavior in response to aversive environmental conditions. These results, however, have not been replicated by other studies, likely because of crucial methodological discrepancies, including variability in the criteria used to define antisocial behavior and assessment of environmental factors. Finally, it has been recently proposed that these genetic variants may actually increase the individual susceptibility not merely to the negative environmental factors, but to the positive ones as well. In this view, such alleles would play a wider modulatory role, by acting as "plasticity" rather than "vulnerability" genes. Overall, these findings have potential important implications that span well outside of neuroscience and psychiatry, to embrace ethics, philosophy, and the law itself, as they pose new challenges to the very notion of Free Will. Novel properly controlled studies that examine multi-allelic genetic profiles, rather than focusing on distinct single variants, will make it possible to achieve a clearer understanding of the molecular underpinnings of the nature by nurture interaction

    Psychological and genetic correlates of controversial moral choices in professional insurance brokers

    No full text
    Psychological and genetic correlates of controversial moral choices in professional insurance brokers, From segregation to integration: The complexity of human brain functions. It represents a new way to investigate human choices in a decision with a strong impact on human life

    Effects on human transcriptome of mutated BRCA1 BRCT domain: a microarray study

    No full text
    BACKGROUND: BRCA1 (breast cancer 1, early onset) missense mutations have been detected in familial breast and ovarian cancers, but the role of these variants in cancer predisposition is often difficult to ascertain. In this work, the molecular mechanisms affected in human cells by two BRCA1 missense variants, M1775R and A1789T, both located in the second BRCT (BRCA1 C Terminus) domain, have been investigated. Both these variants were isolated from familial breast cancer patients and the study of their effect on yeast cell transcriptome has previously provided interesting clues to their possible role in the pathogenesis of breast cancer. METHODS: We compared by Human Whole Genome Microarrays the expression profiles of HeLa cells transfected with one or the other variant and HeLa cells transfected with BRCA1 wild-type. Microarray data analysis was performed by three comparisons: M1775R versus wild-type (M1775RvsWT-contrast), A1789T versus wild-type (A1789TvsWT-contrast) and the mutated BRCT domain versus wild-type (MutvsWT-contrast), considering the two variants as a single mutation of BRCT domain. RESULTS: 201 differentially expressed genes were found in M1775RvsWT-contrast, 313 in A1789TvsWT-contrast and 173 in MutvsWT-contrast. Most of these genes mapped in pathways deregulated in cancer, such as cell cycle progression and DNA damage response and repair. CONCLUSIONS: Our results represent the first molecular evidence of the pathogenetic role of M1775R, already proposed by functional studies, and give support to a similar role for A1789T that we first hypothesized based on the yeast cell experiments. This is in line with the very recently suggested role of BRCT domain as the main effector of BRCA1 tumor suppressor activity
    corecore