27 research outputs found
Microstructural MRI basis of the cognitive functions in patients with Spinocerebellar ataxia type 2
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum. The particular atrophy pattern results in some typical clinical features mainly including motor deficits. In addition, the presence of cognitive impairments, involving language, visuospatial and executive functions, has been also shown in SCA2 patients and it is now widely accepted as a feature of the disease. The aim of the study is to investigate the microstructural patterns and the anatomo-functional substrate that could account for the cognitive symptomatology observed in SCA2 patients. In the present study, diffusion tensor imaging (DTI) based-tractography was performed to map the main cerebellar white matter (WM) bundles, such as Middle and Superior Cerebellar Peduncles, connecting cerebellum with higher order cerebral regions. Damage-related diffusivity measures were used to determine the pattern of pathological changes of cerebellar WM microstructure in patients affected by SCA2 and correlated with the patients' cognitive scores. Our results provide the first evidence that WM diffusivity is altered in the presence of the cerebellar cortical degeneration associated with SCA2 thus resulting in a cerebello-cerebral dysregulation that may account for the specificity of cognitive symptomatology observed in patients
Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome, which can be isolated or associated with extracerebellar signs. It has been shown that patients affected by SCA2 present also cognitive impairments and psychiatric symptoms.
The cerebellum is known to modulate cortical activity and to contribute to distinct functional networks related to higher-level functions beyond motor control. It is therefore conceivable that one or more networks, rather than isolated regions, may be dysfunctional in cerebellar degenerative diseases and that an abnormal connectivity within specific cerebello-cortical regions might explain the widespread deficits typically observed in patients.
In the present study, the network-based statistics (NBS) approach was used to assess differences in functional connectivity between specific cerebellar and erebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes
Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation
Basic income and the right to work: a Keynesian approach
Among the proposals for radical reform of social policy are basic income, which would pay an unconditional cash benefit to all individuals, and the right to work, which would offer guaranteed employment arranged by the state if necessary. This paper examines the macroeconomic consequences of such reform proposals. It sets up a simple Keynesian income-expenditure model that includes basic income and the right to work as alternative methods of providing social assistance, along with the more traditional approach of paying unemployment benefits. The various schemes are compared and contrasted with regard to their implications for employment, stability, distribution, efficiency and the government budget. Potential benefits of basic income or the right to work are emphasised, despite the political obstacles to implementing them
IGF-1 as a possible marker of early cognitive impairment: A pilot study
Insulin-like growth factor (IGF)-1 is an important neurotrophic hormone. Disregulation of this hormone has been reported to influence the genesis of cognitive impairment and dementia in the elderly patients. We evaluated IGF-1 serum values and cognitive status in elder subjects. Primary endpoint was finding a possible link between IGF-1 values and MMSE scores, adjusted for age and sex. Elder patients (range 55–71 ys) were followed for up to 4 years (median 3.2 years). Cognitive status was assessed by Mini Mental State Examination (MMSE). A total of 210 subjects were enrolled. Yearly evaluation included routine laboratory tests, a complete physical examination and cognitive state measurement. At baseline evaluation, patients were divided into three groups: Healthy (MMSE > 26), Borderline (MMSE 24–26), Cognitive impairment (MMSE < 24). We used multiple linear regression with a scatter plot to compare IGF-1 and MMSE, adjusted for diagnosis of hypertension. Then, we checked the ROC curve, analyzing the AUC of our marker. At the baseline evaluation, no differences were found in the three groups for therapy and other diseases. Borderline subjects differed from other two groups, with a significant elevation of IGF-1 values (P < 0.05). The AUC curve of the yearly evaluation showed significant values (0.86 ± 0,02). This trial showed IGF-1 elevation in borderline subjects. Further studies will be performed in order to demonstrate the efficacy and sensibility of this serum marker
Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation
Microstructural MRI basis of the cognitive functions in patients with Spinocerebellar ataxia type 2
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum. The particular atrophy pattern results in some typical clinical features mainly including motor deficits. In addition, the presence of cognitive impairments, involving language, visuospatial and executive functions, has been also shown in SCA2 patients and it is now widely accepted as a feature of the disease. The aim of the study is to investigate the microstructural patterns and the anatomo-functional substrate that could account for the cognitive symptomatology observed in SCA2 patients. In the present study, diffusion tensor imaging (DTI) based-tractography was performed to map the main cerebellar white matter (WM) bundles, such as Middle and Superior Cerebellar Peduncles, connecting cerebellum with higher order cerebral regions. Damage-related diffusivity measures were used to determine the pattern of pathological changes of cerebellar WM microstructure in patients affected by SCA2 and correlated with the patients' cognitive scores. Our results provide the first evidence that WM diffusivity is altered in the presence of the cerebellar cortical degeneration associated with SCA2 thus resulting in a cerebello-cerebral dysregulation that may account for the specificity of cognitive symptomatology observed in patients
Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease characterized by a progressive cerebellar syndrome, which can be isolated or associated with extracerebellar signs. It has been shown that patients affected by SCA2 present also cognitive impairments and psychiatric symptoms. The cerebellum is known to modulate cortical activity and to contribute to distinct functional networks related to higher-level functions beyond motor control. It is therefore conceivable that one or more networks, rather than isolated regions, may be dysfunctional in cerebellar degenerative diseases and that an abnormal connectivity within specific cerebello-cortical regions might explain the widespread deficits typically observed in patients. In the present study, the network-based statistics (NBS) approach was used to assess differences in functional connectivity between specific cerebellar and erebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes
A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.
Abstract
BACKGROUND:
Dosage imbalance is responsible for several genetic diseases, among which Down syndrome is caused by the trisomy of human chromosome 21.
RESULTS:
To elucidate the extent to which the dosage imbalance of specific human chromosome 21 genes perturb distinct molecular pathways, we developed the first mouse embryonic stem (ES) cell bank of human chromosome 21 genes. The human chromosome 21-mouse ES cell bank includes, in triplicate clones, 32 human chromosome 21 genes, which can be overexpressed in an inducible manner. Each clone was transcriptionally profiled in inducing versus non-inducing conditions. Analysis of the transcriptional response yielded results that were consistent with the perturbed gene's known function. Comparison between mouse ES cells containing the whole human chromosome 21 (trisomic mouse ES cells) and mouse ES cells overexpressing single human chromosome 21 genes allowed us to evaluate the contribution of single genes to the trisomic mouse ES cell transcriptome. In addition, for the clones overexpressing the Runx1 gene, we compared the transcriptome changes with the corresponding protein changes by mass spectroscopy analysis.
CONCLUSIONS:
We determined that only a subset of genes produces a strong transcriptional response when overexpressed in mouse ES cells and that this effect can be predicted taking into account the basal gene expression level and the protein secondary structure. We showed that the human chromosome 21-mouse ES cell bank is an important resource, which may be instrumental towards a better understanding of Down syndrome and other human aneuploidy disorders
