37,150 research outputs found
Scattering quantum random-walk search with errors
We analyze the realization of a quantum-walk search algorithm in a passive,
linear optical network. The specific model enables us to consider the effect of
realistic sources of noise and losses on the search efficiency. Photon loss
uniform in all directions is shown to lead to the rescaling of search time.
Deviation from directional uniformity leads to the enhancement of the search
efficiency compared to uniform loss with the same average. In certain cases
even increasing loss in some of the directions can improve search efficiency.
We show that while we approach the classical limit of the general search
algorithm by introducing random phase fluctuations, its utility for searching
is lost. Using numerical methods, we found that for static phase errors the
averaged search efficiency displays a damped oscillatory behaviour that
asymptotically tends to a non-zero value.Comment: 10 pages, 10 figures. Two figures added for clarity, also made
improvements to the tex
Attractor Flows from Defect Lines
Deforming a two dimensional conformal field theory on one side of a trivial
defect line gives rise to a defect separating the original theory from its
deformation. The Casimir force between these defects and other defect lines or
boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns
out, that these flows are constant reparametrizations of gradient flows of the
g-functions of the chosen defect or boundary condition. The special flows
associated to supersymmetric boundary conditions in N=(2,2) superconformal
field theories agree with the attractor flows studied in the context of black
holes in N=2 supergravity.Comment: 28 page
Feasibility study ASCS remote sensing/compliance determination system
A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management
Blackbody radiation shift in 87Rb frequency standard
The operation of atomic clocks is generally carried out at room temperature,
whereas the definition of the second refers to the clock transition in an atom
at absolute zero. This implies that the clock transition frequency should be
corrected in practice for the effect of finite temperature of which the leading
contributor is the blackbody radiation (BBR) shift. Experimental measurements
of the BBR shifts are difficult. In this work, we have calculated the blackbody
radiation shift of the ground-state hyperfine microwave transition in 87Rb
using the relativistic all-order method and carried out detailed evaluation of
the accuracy of our final value. Particular care is taken to accurately account
for the contributions from highly-excited states. Our predicted value for the
Stark coefficient, k_S=-1.240(4)\times 10^{-10}\text{Hz/(V/m)}^{2} is three
times more accurate than the previous calculation [1].Comment: 7 page
Structural, orbital, and magnetic order in vanadium spinels
Vanadium spinels (ZnV_2O_4, MgV_2O_4, and CdV_2O_4) exhibit a sequence of
structural and magnetic phase transitions, reflecting the interplay of lattice,
orbital, and spin degrees of freedom. We offer a theoretical model taking into
account the relativistic spin-orbit interaction, collective Jahn-Teller effect,
and spin frustration. Below the structural transition, vanadium ions exhibit
ferroorbital order and the magnet is best viewed as two sets of
antiferromagnetic chains with a single-ion Ising anisotropy. Magnetic order,
parametrized by two Ising variables, appears at a tetracritical point.Comment: v3: streamlined introductio
Unified model for vortex-string network evolution
We describe and numerically test the velocity-dependent one-scale (VOS)
string evolution model, a simple analytic approach describing a string network
with the averaged correlation length and velocity. We show that it accurately
reproduces the large-scale behaviour (in particular the scaling laws) of
numerical simulations of both Goto-Nambu and field theory string networks. We
explicitly demonstrate the relation between the high-energy physics approach
and the damped and non-relativistic limits which are relevant for condensed
matter physics. We also reproduce experimental results in this context and show
that the vortex-string density is significantly reduced by loop production, an
effect not included in the usual `coarse-grained' approach.Comment: 5 pages; v2: cosmetic changes, version to appear in PR
Use of remote sensing techniques for inventorying and planning utilization of land resources in South Dakota
The basic procedures for interpreting remote sensing imagery to rapidly develop general soils and land use inventories were developed and utilized in Pennington County, South Dakota. These procedures and remote sensing data products were illustrated and explained to many user groups, some of whom are interested in obtaining similar data. The general soils data were integrated with land soils data supplied by the county director of equalization to prepare a land value map. A computer print-out of this map indicating a land value for each quarter section is being used in tax reappraisal of Pennington County. The land use data provided the land use planners with the present use of land in Pennington County. Additional uses of remote sensing applications are also discussed including tornado damage assessment, hail damage evaluation, and presentation of soil and land value information on base maps assembled from ERTS-1 imagery
Candidate molecular ions for an electron electric dipole moment experiment
This paper is a theoretical work in support of a newly proposed experiment
(R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises
greater sensitivity to measurements of the electron's electric dipole moment
(EDM) based on the trapping of molecular ions. Such an experiment requires the
choice of a suitable molecule that is both experimentally feasible and
possesses an expectation of a reasonable EDM signal. We find that the molecular
ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet
Delta states. In particular, we anticipate that the effective electric fields
generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and
-18 GV/cm respectively. As a byproduct of this discussion, we also explain how
to make estimates of the size of the effective electric field acting in a
molecule, using commercially available, nonrelativistic molecular structure
software.Comment: 25 pages, 3 figures, submitted to Physical Review
- …