952 research outputs found

    Suppressing quasiparticle poisoning with a voltage-controlled filter

    Full text link
    We study single-electron charging events in an Al/InAs nanowire hybrid system with deliberately introduced gapless regions. The occupancy of a Coulomb island is detected using a nearby radio-frequency quantum dot as a charge sensor. We demonstrate that a 1 micron gapped segment of the wire can be used to efficiently suppress single electron poisoning of the gapless region and therefore protect the parity of the island while maintaining good electrical contact with a normal lead. In the absence of protection by charging energy, the 1e switching rate can be reduced below 200 per second. In the same configuration, we observe strong quantum charge fluctuations due to exchange of electron pairs between the island and the lead. The magnetic field dependence of the poisoning rate yields a zero-field superconducting coherence length of ~ 90 nm

    Anisotropy of Thermal Conductivity and Possible Signature of the Fulde-Ferrell-Larkin-Ovchinnikov state in CeCoIn_5

    Full text link
    We have measured the thermal conductivity of the heavy-fermion superconductor CeCoIn_5 in the vicinity of the upper critical field, with the magnetic field perpendicular to the c axis. Thermal conductivity displays a discontinuous jump at the superconducting phase boundary below critical temperature T_0 ~ 1 K, indicating a change from a second to first order transition and confirming the recent results of specific heat measurements on CeCoIn_5. In addition, the thermal conductivity data as a function of field display a kink at a field H_k below the superconducting critical field, which closely coincides with the recently discovered anomaly in specific heat, tentatively identified with the appearance of the spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state. Our results indicate that the thermal conductivity is enhanced within the FFLO state, and call for further theoretical investigations of the order parameter's real space structure (and, in particular, the structure of vortices) and of the thermal transport within the inhomogeneous FFLO state.Comment: 19 pages, 6 figures, submitted to Prhys. Rev.

    Unifying the Phase Diagrams of the Magnetic and Transport Properties of La_(2-x)Sr_xCuO_4, 0 < x < 0.05

    Full text link
    An extensive experimental and theoretical effort has led to a largely complete mapping of the magnetic phase diagram of La_(2-x)Sr_xCuO_4, and a microscopic model of the spin textures produced in the x < 0.05 regime has been shown to be in agreement with this phase diagram. Here we use this same model to derive a theory of the impurity-dominated, low temperature transport. Then, we present an analysis of previously published data for two samples: x = 0.002 data from Chen et. al., and x = 0.04 data from Keimer et. al. We show that the transport mechanisms in the two systems are the same, even though they are on opposite sides of the observed insulator-to-metal transition. Our model of impurity effects on the impurity band conduction, variable-range hopping conduction, and coulomb gap conduction, is similar to that used to describe doped semiconductors. However, for La_(2-x)Sr_xCuO_4 we find that in addition to impurity-generated disorder effects, strong correlations are important and must be treated on a equal level with disorder. On the basis of this work we propose a phase diagram that is consistent with available magnetic and transport experiments, and which connects the undoped parent compound with the lowest x value for which La_(2-x)Sr_xCuO_4 is found to be superconducting, x about 0.06.Comment: 7 pages revtex with one .ps figur

    Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate

    Full text link
    We present a study of Nernst effect in underdoped La2xSrxCuO4La_{2-x}Sr_xCuO_4 in magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was found to persist in presence of a field-induced non-metallic resistivity. By simultaneously measuring resistivity and the Nernst coefficient, we extract the entropy of vortex cores in the vicinity of this field-induced superconductor-insulator transition. Moreover, the temperature dependence of the thermo-electric Hall angle provides strong constraints on the possible origins of the finite Nernst signal above TcT_c, as recently discovered by Xu et al.Comment: 5 Pages inculding 4 figure

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    Field-free all-optical switching and electrical read-out of Tb/Co-based magnetic tunnel junctions

    Full text link
    Switching of magnetic tunnel junction using femto-second laser enables a possible path for THz frequency memory operation, which means writing speeds 2 orders of magnitude faster than alternative electrical approaches based on spin transfer or spin orbit torque. In this work we demonstrate successful field-free 50fs single laser pulse driven magnetization reversal of [Tb/Co] based storage layer in a perpendicular magnetic tunnel junction. The nanofabricated magnetic tunnel junction devices have an optimized bottom reference electrode and show Tunnel Magnetoresistance Ratio values (TMR) up to 74\% after patterning down to sub-100nm lateral dimensions. Experiments on continuous films reveal peculiar reversal patterns of concentric rings with opposite magnetic directions, above certain threshold fluence. These rings have been correlated to patterned device switching probability as a function of the applied laser fluence. Moreover, the magnetization reversal is independent on the duration of the laser pulse. According to our macrospin model, the underlying magnetization reversal mechanism can be attributed to an in-plane reorientation of the magnetization due to a fast reduction of the out-of-plane uniaxial anisotropy. These aspects are of great interest both for the physical understanding of the switching phenomenon and their consequences for all-optical-switching memory devices, since they allow for a large fluence operation window with high resilience to pulse length variability

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic

    Spin relaxation of conduction electrons in bulk III-V semiconductors

    Full text link
    Spin relaxation time of conduction electrons through the Elliot-Yafet, D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for bulk GaAs, GaSb, InAs and InSb of both nn- and pp-type. Relative importance of each spin relaxation mechanism is compared and the diagrams showing the dominant mechanism are constructed as a function of temperature and impurity concentrations. Our approach is based upon theoretical calculation of the momentum relaxation rate and allows understanding of the interplay between various factors affecting the spin relaxation over a broad range of temperature and impurity concentration.Comment: an error in earlier version correcte

    In plane reorientation induced single laser pulse magnetization reversal in rare-earth based multilayer

    Full text link
    Single Pulse All Optical Helicity Independent Switching (AO-HIS) represents the ability to reverse the magnetic moment of a nanostructure using a femtosecond single laser pulse. It is an ultrafast method to manipulate magnetization without the use of any applied field. Since the first switching experiments carried on GdFeCo ferrimagnetic systems, single pulse AO-HIS has been restricted for a while to Gd-based alloys or Gd/FM bilayers where FM is a ferromagnetic layer. Only recently has AO-HIS been extended to a few other materials: MnRuGa ferrimagnetic Heusler alloys and Tb/Co multilayers with a very specific range of thickness and composition. Here, we demonstrate that single pulse AO-HIS observed in Tb/Co results from a different mechanism than the one for Gd based samples and that it can be obtained for a large range of rare earth-transition metal (RE-TM) multilayers, making this phenomenon much more general. Surprisingly, in this large family of (RE-TM) multilayer systems, the threshold fluence for switching is observed to be independent of the pulse duration, up to at least 12 ps. Moreover, at high laser intensities, concentric ring domain structures are induced, unveiling multiple fluence thresholds. These striking switching features, which are in contrast to those of AO-HIS in GdFeCo alloys, concomitant with the demonstration of an in-plane reorientation of the magnetization, point towards an intrinsic precessional reversal mechanism. Our results allow expanding the variety of materials with tunable magnetic properties that can be integrated in complex heterostructures and provide a pathway to engineer materials for future applications based on all-optical control of magnetic order
    corecore