115 research outputs found

    Numerical techniques for lattice QCD in the ϵ\epsilon--regime

    Full text link
    In lattice QCD it is possible, in principle, to determine the parameters in the effective chiral lagrangian (including weak interaction couplings) by performing numerical simulations in the ϵ\epsilon--regime, i.e. at quark masses where the physical extent of the lattice is much smaller than the Compton wave length of the pion. The use of a formulation of the lattice theory that preserves chiral symmetry is attractive in this context, but the numerical implementation of any such approach requires special care in this kinematical situation due to the presence of some very low eigenvalues of the Dirac operator. We discuss a set of techniques (low-mode preconditioning and adapted-precision algorithms in particular) that make such computations numerically safe and more efficient by a large factor.Comment: Plain TeX source, 32 pages, figures include

    Exact results and approximation schemes for the Schwinger model with the overlap Dirac operator

    Get PDF
    We propose new techniques to implement numerically the overlap-Dirac operator which exploit the physical properties of the underlying theory to avoid nested algorithms. We test these procedures in the two-dimensional Schwinger model and the results are very promising. We also present a detailed computation of the spectrum and chiral properties of the Schwinger Model in the overlap lattice formulation.Comment: Lattice 2000 (Chiral Fermions

    Light hadron spectra and wave functions in quenched QCD with overlap quarks on a large lattice

    Full text link
    A simulation of quenched QCD with the overlap Dirac operator has been completed using 100 Wilson gauge configurations at beta=6 on an 18^3x64 lattice. We present results for meson and baryon masses, meson final state "wave functions'' and other observables.Comment: 5 LaTeX pages (espcrc2.sty), 13 figures. Combined contributions by J.H., L.L. and C.R. at Lattice2004(spectrum), Fermilab, June 21-26, 200

    Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD

    Get PDF
    We present preliminary results for the chiral behavior of charged pseudo-Goldstone-boson masses and decay constants. These are obtained in simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea quarks. In these simulations, mesons are composed of either valence quarks discretized in the same way as the sea quarks (unitary simulations) or of overlap valence quarks (mixed-action simulations). We find that the chiral behavior of the pseudoscalar meson masses in the mixed-action calculations cannot be explained with continuum, partially-quenched chiral perturbation theory. We show that the inclusion of O(a^2) unitarity violations in the chiral expansion resolves this discrepancy and that the size of the unitarity violations required are consistent with those which we observe in the zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007, Regensburg, German
    • …
    corecore