15,427 research outputs found

    Minimal mechanisms for vegetation patterns in semiarid regions

    Get PDF
    The minimal ecological requirements for formation of regular vegetation patterns in semiarid systems have been recently questioned. Against the general belief that a combination of facilitative and competitive interactions is necessary, recent theoretical studies suggest that, under broad conditions, nonlocal competition among plants alone may induce patterns. In this paper, we review results along this line, presenting a series of models that yield spatial patterns when finite-range competition is the only driving force. A preliminary derivation of this type of model from a more detailed one that considers water-biomass dynamics is also presented. Keywords: Vegetation patterns, nonlocal interactionsComment: 8 pages, 4 figure

    Plankton blooms in vortices: The role of biological and hydrodynamic time scales

    Get PDF
    We study the interplay of hydrodynamic mesoscale structures and the growth of plankton in the wake of an island, and its interaction with a coastal upwelling. Our focus is on a mechanism for the emergence of localized plankton blooms in vortices. Using a coupled system of a kinematic flow mimicking the mesoscale structures behind the island and a simple three component model for the marine ecosystem, we show that the long residence times of nutrients and plankton in the vicinity of the island and the confinement of plankton within vortices are key factors for the appearance of localized plankton bloomsComment: 29 pages, 9 figure

    Biological activity in the wake of an island close to a coastal upwelling

    Get PDF
    Hydrodynamic forcing plays an important role in shaping the dynamics of marine organisms, in particular of plankton. In this work we study the planktonic biological activity in the wake of an island which is close to an upwelling region. Our research is based on numerical analysis of a kinematic flow mimicking the hydrodynamics in the wake, coupled to a three-component plankton model. Depending on model parameters different phenomena are described: a) The lack of transport of nutrients and plankton across the wake, so that the influence of upwelling on primary production on the other side of the wake is blocked. b) For sufficiently high vorticity, the role of the wake in facilitating this transport and leading to an enhancement of primary production. Finally c) we show that under certain conditions the interplay between wake structures and biological growth leads to plankton blooms inside mesoscale hydrodynamic vortices that act as incubators of primary production.Comment: 42 pages, 9 figure

    Synchronization and entrainment of coupled circadian oscillators

    Get PDF
    Circadian rhythms in mammals are controlled by the neurons located in the suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the system of neurons is very efficiently entrained by the 24-hour light-dark cycle. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light dark cycle in neuronal synchronization. Nevertheless, heterogeneity as a natural and permanent ingredient of these cellular interactions is seemingly to play a major role in these biochemical processes. In this paper we use a model that considers the neurons of the suprachiasmatic nucleus as chemically-coupled modified Goodwin oscillators, and introduce non-negligible heterogeneity in the periods of all neurons in the form of quenched noise. The system response to the light-dark cycle periodicity is studied as a function of the interneuronal coupling strength, external forcing amplitude and neuronal heterogeneity. Our results indicate that the right amount of heterogeneity helps the extended system to respond globally in a more coherent way to the external forcing. Our proposed mechanism for neuronal synchronization under external periodic forcing is based on heterogeneity-induced oscillators death, damped oscillators being more entrainable by the external forcing than the self-oscillating neurons with different periods.Comment: 17 pages, 7 figure

    Synchronization of Chaotic Systems by Common Random Forcing

    Full text link
    We show two examples of noise--induced synchronization. We study a 1-d map and the Lorenz systems, both in the chaotic region. For each system we give numerical evidence that the addition of a (common) random noise, of large enough intensity, to different trajectories which start from different initial conditions, leads eventually to the perfect synchronization of the trajectories. The largest Lyapunov exponent becomes negative due to the presence of the noise terms.Comment: 5 pages, uses aipproc.cls and aipproc.sty (included). Five double figures are provided as ten separate gif files. Version with (large) postscript figures included available from http://www.imedea.uib.es/PhysDept/publicationsDB/date.htm

    Preface "Nonlinear processes in oceanic and atmospheric flows"

    Get PDF
    Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on ``Nonlinear Processes in Oceanic and Atmospheric Flows'' contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Ni\~no Southern Oscillation.Comment: This is the introductory article to a Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows'', published in the journal Nonlinear Processes in Geophysics, where the different contributions are summarized. The Special Issue itself is freely available from http://www.nonlin-processes-geophys.net/special_issue103.htm

    Self–sealing hot isostatic pressing–diffusion bonding of titanium for near net shape manufacture

    Get PDF
    Diffusion bonding is a manufacturing process that has been largely used in industry in a variety of sectors and applications (casting, fan blades manufacturing, nuclear reactors components fabrication, etc.). The process is performed in a hot isostatic press (HIP) and requires encapsulation of the components to generate vacuum and stability in the assemblies. Encapsulation is typically accomplished by a canister, which needs the same shape, geometry and complexity of the final component. In this work, a novel manufacturing process was developed to eliminate the canister and replace its performance by a “Self-Sealing” HIP-Diffusion Bonding method, which is based in a series of welding steps with laser and electron beams that create an intermediate vacuum cavity for diffusion bonding. The concept of this novel process was developed and patented at the University of Nottingham with Rolls Royce sponsorship. The research project for this MPhil study aimed to validate this technology, taking into account that joining of massive titanium sections cut from plate is an attractive alternative to manufacturing of large components by forging, as it offers a simple route to near net shaping, reducing the overall cost of assemblies and parts. A collection of different geometries was tested and all results were set as the process standard. The tensile and fatigue properties of Ti-6-4-to-Ti-6-4, Ti-624-to-Ti-6246 and Ti-6-4-to-Ti-6246 bonded parts are presented and compared with HIPed bulk Ti. The effect of surface preparation on the bond strength is also presented. Overall, little to no decrement in the strength, and only a small decrease in fatigue life is observed as a result of the bonding process. In all cases, failure was observed away from the bond line and showed high levels of plastic deformation. The novel process has been shown to provide a robust, reliable and repeatable method for bonding similar and dissimilar Ti plates

    Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Get PDF
    Eastern Boundary Upwelling Systems (EBUS) are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs), and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean.Comment: 12 pages. NPG Special Issue on "Nonlinear processes in oceanic and atmospheric flows". Open Access paper, available also at the publisher site: http://www.nonlin-processes-geophys.net/16/557/2009

    Clone size distributions in networks of genetic similarity

    Get PDF
    We build networks of genetic similarity in which the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e. sets of organisms with identical genotype forming clones. As a first step to understand the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.Comment: 17 pages, 4 figures. One figure improved and other minor changes. To appear in Physica
    • …
    corecore