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Circadian rhythms in mammals are controlled by the neurons located in the
suprachiasmatic nucleus of the hypothalamus. In physiological conditions, the sys-
tem of neurons is very efficiently entrained by the 24-hour light-dark cycle. Most of
the studies carried out so far emphasize the crucial role of the periodicity imposed
by the light dark cycle in neuronal synchronization. Nevertheless, heterogeneity as
a natural and permanent ingredient of these cellular interactions is seemingly to
play a major role in these biochemical processes. In this paper we use a model that
considers the neurons of the suprachiasmatic nucleus as chemically-coupled modi-
fied Goodwin oscillators, and introduce non-negligible heterogeneity in the periods
of all neurons in the form of quenched noise. The system response to the light-dark
cycle periodicity is studied as a function of the interneuronal coupling strength,
external forcing amplitude and neuronal heterogeneity. Our results indicate that
the right amount of heterogeneity helps the extended system to respond globally in
a more coherent way to the external forcing. Our proposed mechanism for neuronal
synchronization under external periodic forcing is based on heterogeneity-induced
oscillators death, damped oscillators being more entrainable by the external forcing
than the self-oscillating neurons with different periods.

Keywords: Circadian oscillations; quenched noise; noise-induced oscillators

death; modified Goodwin model; noise-induced synchronization.

1. Introduction

Circadian rhythms are light-dark dependent cycles of roughly 24 hours present
in the biochemical and physiological processes of many living entities (Reppert &
Weaver 2002). In mammals the main mediator between the light-dark periodicity
and the biological rhythms is formed by two interconnected suprachiasmatic nuclei
(SCN), located in the hypothalamus. These nuclei form the so called “circadian
pacemaker” and contain about 10.000 neurons each (Reppert & Weaver 2002; Moore
et al. 2002).

The main property of the SCN is that their activity displays self-sustained oscil-
lations in synchrony with the external forcing imposed by the light-dark cycle. The
exact mechanism leading to this behavior has been the subject of intense research.
It has been shown that, when taken individually, neurons produce oscillations with
a constant period ranging from 20 to 28 hours (Honma et al. 2004; Welsh et al.
1995). The oscillatory behavior originates in a regulatory circuit with a negative
feedback loop. The relevant question is how this individual oscillatory behavior
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translates into common, global, oscillations of the SCN activity synchronized with
the external light stimulus.

It has been shown that the origin of the oscillatory activity of the circadian
pacemaker at the global level resides on the interaction between the SCN neurons.
Coupling between cells in the SCN is achieved partly by neurotransmitters (Honma
et al. 2004; Hastings & Herzog 2004) and it is by means of those neurotransmitters
that external forcing by light influences the neuronal synchronization. For example
the vasoactive intestinal polypeptide (VIP) has been shown to be necessary in medi-
ating both the periodicity and the internal synchrony of mammalian clock neurons
(Shen et al. 2000; Aton et al. 2005; Maywood et al. 2006). Therefore, a model of
coupled and forced neurons appears quite naturally as responsible for the circadian
rhythms. Along these lines, an interesting mechanism has been put forward recently
by Gonze et al. (2005) and by Bernard et al. (2007). They proposed that synchro-
nization to the external forcing is facilitated by the fact that interneuronal coupling
transforms SCN into damped oscillators which can then be easily entrained.

In this paper we show that the presence of some level of heterogeneity or dis-
persion in the intrinsic periods of the oscillators (Schaap et al. 2003; Herzog et al.
2004) can improve the response of the coupled neuronal system to the external
light-dark forcing. The proposed mechanism for the improvement of the neuronal
synchronization under external periodic forcing bears some similarities with the one
proposed in (Gonze et al. 2005; Bernard et al. 2007) in the sense that the oscillators
are brought to a regime of oscillator death (Ermentrout 1990; Mirollo & Strogatz
1990), but in our case this regime is induced by the presence of heterogeneity. Once
this regime has been reached, the damped oscillators are more entrainable by the
external forcing than the self-oscillating neurons with different periods, or the syn-
chronized oscillatory state which appears in the strong coupling regime but with a
period larger than the individual neuronal periods.

To be more specific, we will assume that the periods of the individual neurons
are random variables drawn from a normal distribution. We will then analyze the
global response of the system to the light-dark cycle periodicity as a function of the
interneuronal coupling strength, external forcing amplitude and neuronal hetero-
geneity. We show that the presence of the right amount of dispersion in the periods
of the neurons can indeed enhance the synchronization to the external forcing.

Period dispersion arises as a consequence of the cellular heterogeneity at the
biochemical level, which is an experimentally well observed fact (Aton & Herzog
2005; Honma et al. 2004). It can act in either physiological or pathological condi-
tions. An example of the latter is the diversification of antigenic baggage present
in tumor cells that makes them more difficult to be recognized and captured by
the defense mechanisms and therefore more prone to migrate and develop metasta-
sis (González-Garćıa et al. 2002). Our results show that some level of disorder can
be of help when synchronizing neuronal activity to the external forcing. Although
counterintuitive, it has been unambiguously shown that the addition of various
forms of disorder can improve the order in the output of a large variety of non-
linear systems. For example, the mechanism of stochastic resonance (Gammaitoni
et al. 1998; Hänggi & Marchesoni 2009) shows that the response of a bistable sys-
tem to a weak signal can be optimally amplified by the presence of an intermediate
level of dynamical noise. Stochastic resonance is not a rare phenomenon; it has been
repeatedly shown to be relevant in physical and biological systems described by non-
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linear dynamical equations (Gammaitoni et al. 1998; Hänggi & Marchesoni 2009).
In large systems with many coupled elements, noise is responsible for a large variety
of ordering effects, such as pattern formation, phase transitions, phase separation,
spatiotemporal stochastic resonance, noise-sustained structures, doubly stochastic
resonance, amongst many others (Garćıa-Ojalvo & Sancho 1999). All these exam-
ples have in common that some sort of order at the macroscopic level appears only
in the presence of the right amount of noise or disorder at the microscopic level.
Furthermore, it has been proven that noise may play a constructive role in nonlin-
ear systems, by enhancing coherent (periodic) behavior near bifurcations and phase
transitions (Neiman et al. 1997; Pikovsky & Kurths 1997). In this paper we intro-
duce non-negligible random heterogeneity into the periods of all neurons, so-called
quenched noise. Numerical simulations suggest (data not shown) that the results are
valid as well when the quenched noise is introduced into the model parameters. A
different approach is the consideration of intracellular stochastic variability due to
low molecule numbers (Forger & Peskin 2005) or both variability and heterogeneity.

Close to our work is the study by Ueda et al. (2002), where the effect of fluc-
tuations in neuron parameter values is assessed and it is shown that the coupled
system is relatively robust to noise. Previous theoretical studies have addressed the
effect of noise on genetic oscillators (Thattai & van Oudenaarden 2001; Steuer et al.
2003; Becskei et al. 2005), and some have proposed an ordering influence of noise
on circadian clocks at the single cell level in cases where neither light intensity nor
coupling strength by themselves can synchronize the system. Collective phenomena
induced by heterogeneity in autonomous, non-forced systems, has also been dis-
cussed in the literature. For example (de Vries & Sherman 2001) and (Cartwright
2000) have shown that collective bursting or firing can appear in excitable systems
and a general theory of the role of heterogeneity in those systems has been devel-
oped by (Tessone et al. 2007). In this paper, we refer to the collective response
in systems of non-linear oscillators subjected to the action of an external forcing
representing the day-light cycle.

The paper is organized as follows. In section 2 we will describe in detail the
model of circadian oscillators and the methods we use. It is a coupled extension of
the original Goodwin oscillator (Goodwin 1965) as developed by Gonze et al. (2005).
In section 3 we analyze the system response to the periodic external forcing, as a
function of the external forcing amplitude, coupling strength and neuronal diversity
or heterogeneity. By simulating numerically the governing differential equations we
identify the range of these parameters for which the extended system oscillates in
synchrony and entrained to the external light period. Section a describes the mech-
anism through which the neuronal heterogeneity favors the synchronization with
the external forcing and analyzes the combined influence of the coupling strength,
neuronal heterogeneity and light amplitude on the stability of the linearized sys-
tem of coupled oscillators. We show that a mean variable in this model exhibits
a transition from a rhythmic to an arrhythmic dynamics (the so-called oscillator
death (Ermentrout 1990; Mirollo & Strogatz 1990)). Concluding remarks are found
in section 4.
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2. Model and methods

(a) The circadian pacemaker

As stated in the introduction, our aim is to consider the role that the hetero-
geneity in the population of neurons plays in the global response of the SCN to
an external oscillating stimulus. To this end, we consider an ensemble of coupled
neurons subject to a periodic forcing. Each of the neurons, when uncoupled from
the others and from the external stimulus, acts as an oscillator with an intrinsic
period. Heterogeneity is considered insofar the individual periods are not identi-
cal, but show some degree of dispersion around a mean value. For each one of the
neurons in the SCN we use a four-variable model proposed by Gonze et al. (Gonze
et al. 2005), which is based originally on the Goodwin oscillator (Goodwin 1965),
to describe circadian oscillations in single cells. The variables of the model are as
follows: The clock gene mRNA (X) produces a clock protein (Y ), which activates a
transcriptional inhibitor (Z) and this in turn inhibits the transcription of the clock
gene, closing a negative feedback loop. The mRNA X also excites the production
of neurotransmitter V , which in the coupled system will be then the responsible
of an additional positive feedback loop. In order to overcome the high Hill coeffi-
cients required for self-oscillations, Gonze et al. replaced the linear degradation by
nonlinear Michaelis-Menten terms. This leads to the system of equations:

dX

dt
= ν1

K4
1

K4

1
+ Z4

− ν2

X

K2 + X
, (2.1)

dY

dt
= k3X − ν4

Y

K4 + Y
, (2.2)

dZ

dt
= k5Y − ν6

Z

K6 + Z
, (2.3)

dV

dt
= k7X − ν8

V

K8 + V
, (2.4)

which, depending on parameters, might produce oscillations in a stable limit cycle.
Using the values ν1 = 0.7 nM/h, ν2 = ν4 = ν6 = 0.35 nM/h, ν8 = 1 nM/h,
K1 = K2 = K4 = K6 = K8 = 1 nM, k3 = k5 = 0.7/h, k7 = 0.35/h, the period of
the limit cycle oscillations is T = 23.5 h.

For the complete model, we take N neuronal oscillators, each one of them de-
scribed by four variables (Xi, Yi, Zi, Vi), i = 1, . . . , N , satisfying the above evolution
equations. Heterogeneity in the intrinsic periods is introduced by multiplying the
left-hand-side of each one of the equations (2.1–2.4) by a scale factor τi. Hence,
the intrinsic period Ti of the isolated neuron i is τiT . The numbers τi are indepen-
dently taken from a normal random distribution of mean 1 and standard deviation
σ. Since the periods must be positive, in the numerical simulations we have ex-
plicitly checked that, for the values of σ considered later, τi never takes a negative
value, which would be unacceptable. The standard deviation σ will be taken as a
measure of the diversity. A value of σ = 0.1 for example corresponds to a standard
deviation of 10% in the individual periods of the uncoupled neurons, close to the
observed variation of periods between 20 and 28 hours.

Two additional factors influence the dynamics of single cell oscillations: forcing
by light and intercellular coupling. Both are assumed to act independently from the
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negative feedback loop and are added as independent terms in the transcription rate
of X (Gonze et al. 2005). Light is incorporated through a periodic time-dependent
function L(t), which can be realized in various forms. In the majority of the pre-

sented results we have used a sinusoidal signal, L(t) =
L0

2
(1 + sin ωt). In some

cases, for comparison and to simulate different day lengths, we have used a square

wave L(t) =

{

L0, if (t mod 24h) < tlight

0, otherwise
. In both ways the signal oscillates be-

tween the values L(t) = 0 and L(t) = L0 with a period 2π/ω = 24h.
Coupling between the neurons is assumed to depend on the concentration F of

the synchronizing factor (the neurotransmitter) in the extracellular medium, which
builds-up by contributions from all neurons. Under a fast transmission hypothesis,
the extracellular concentration is assumed to equilibrate to the average, mean-field,
cellular neurotransmitter concentration, F = 1

N

∑N

i=1
Vi. The resulting model is:

τi

dXi

dt
= ν1

K4

1

K4
1

+ Z4

i

− ν2

Xi

K2 + Xi

+ νc

KF

Kc + KF
+ L(t) (2.5)

τi

dYi

dt
= k3Xi − ν4

Yi

K4 + Yi

, (2.6)

τi

dZi

dt
= k5Yi − ν6

Zi

K6 + Zi

, (2.7)

τi

dVi

dt
= k7Xi − ν8

Vi

K8 + Vi

, (2.8)

F =
1

N

N
∑

i=1

Vi, (2.9)

with νc = 0.4 nM/h, Kc = 1 nM.
There is experimental evidence supporting the assumption of a chemical (rather

than electrical) mechanism of inter-cell communication among SCN neurons as a
synchronization factor and, in fact, mechanisms other than neurotransmitters or
electrical coupling for the SCN communication have been suggested (e.g. by Pol &
Dudek (1993)). Furthermore, more realistic modeling which takes into account all
variables known to participate of the negative feedback loop has been introduced.
These models may include up to 10 variables and corresponding equations for each
single cell (Bernard et al. 2007).

It seems, however, that in order to get understanding of the SCN dynamics, a
sufficient tool is the 4 variable model described above. In fact, the synchronization of
damped oscillators is independent from the particular intracellular model used and
as discussed by (Bernard et al. 2007), this system, the model developed by (Leloup
& Goldbeter 2003), and other simple negative feedback oscillators have similar
synchronization properties. In this paper we have decided to use the simpler 4-
variable model although most of our results are also valid in the more complex
10-variable model.

A model close to (2.5–2.9) has been used by Ullner et al. (2009), where the
authors investigate how the interplay between fluctuations of constant light and in-
tercellular coupling affects the dynamics of the collective rhythm in a large ensemble
of non-identical, globally coupled oscillators. In their case, however, an inverse de-
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pendence of the cell-cell coupling strength on the light intensity was implemented,
in such a way that the larger the light intensity the weaker the coupling.

(b) Measures of synchrony and entrainment

Due both to the effect of coupling and of forcing, the neurons might synchronize
their oscillations. There are several possible measures of how good this synchroniza-
tion is. In this paper, the interneuronal synchronization will be quantified by the
parameter of synchrony ρ, defined as

ρ =

√

√

√

√1 −

〈

∑N

i=1
[Vi(t) − F (t)]2

∑N

i=1
Vi(t)2

〉

=

√

√

√

√

〈

F (t)2

1

N

∑N

i=1
Vi(t)2

〉

, (2.10)

where 〈. . . 〉 denotes a time average in the long-time asymptotic state. The pa-
rameter ρ varies between a value close to 0 (no synchronization) and 1 (perfect
synchronization, with all neurons in phase, Vi(t) = Vj(t), ∀i, j). It is important to
note that even if the neurons synchronize perfectly their oscillations, the period
of those oscillations does not necessarily coincide with the mean period T of the
individual oscillators or with the period 2π/ω of the external forcing. In fact, in
the unforced (no light) case, the period of the common oscillations (for the set of
parameters given before and a dispersion of σ = 0.05 and coupling K = 0.5) is
approximately equal to 26.5 h whereas the period of the forcing is 2π/ω = 24 h
and the mean period of the individual uncoupled oscillators is T = 23.5 h (Gonze
et al. 2005).

Besides the previous measure of synchronization amongst the oscillators, we are
also concerned about the quality of the global response of the neuronal ensemble to
the external forcing L(t). A suitable measure of this response can be defined using
the average gene concentration,

X(t) =
1

N

N
∑

i=1

Xi(t), (2.11)

and computing the so-called spectral amplification factor R (Gammaitoni et al.
1998),

R =
4

L2

0

∣

∣〈e−iωt
X(t)〉

∣

∣

2

. (2.12)

R is nothing but the normalized amplitude of the Fourier component at the forcing
frequency ω of the time series X(t). We will show that, under some circumstances,
the response R will increase with the intrinsic diversity σ and that the period of
the oscillations at the global level coincides with that of the external forcing, these
being the main results of this paper.

3. Results

The synchronization properties of the set of circadian oscillators is influenced by
the amplitude of the external forcing L0, the coupling strength K and the diversity
in the individual periods σ. The role of the first two has been studied in (Bernard
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Figure 1. Synchrony order parameter ρ (see Eq. (2.10)). Values are coded in colour levels,
and displayed as a function of L0 and σ for several values of K. Data from numerical
simulations of N = 1000 neurons with dynamics ruled by Eqs. (2.5–2.9). Synchrony among
the neurons (yellow region) is favored by strong or very weak light intensity L0, low
diversity σ and large coupling K. The thick black line is the linear stability limit discussed
in section a (see also Fig. 7).

et al. 2007; Becker-Weimann et al. 2004; Gonze et al. 2005). In this section we focus
on the heterogeneity of neuronal periods and analyze the combined influence of L0,
K and σ on the different parameters quantifying interneuronal synchronization and
response to the forcing.

Fig. 1 shows colour plots of the parameter of synchrony ρ as a function of the
diversity σ and the light intensity L0, for different values of the coupling strength
K. High values of the light intensity L0 favor interneuronal synchrony. Also in
agreement with its intuitive disordering role, high neuronal diversity leads to a low
synchrony parameter ρ in several parts of the diagrams. However, there is a region
of values of L0 ∈ [0, Lmax] for which there is a non-monotonous dependence of the
synchrony order parameter with respect to the diversity. This can be seen more
clearly in panel (a) of Fig. 2 where we plot ρ as a function of diversity σ for fixed
values of K = 0.6 and L0 = 0.005. ρ first decreases by increasing σ within the
interval 0 ≤ σ ≤ 0.05, but then it develops a maximum. The range of values of
L0 for which this non-monotonous behavior is observed depends on the coupling
constant K: the larger K, the larger Lmax.

As stated before, the fact that neurons synchronize amongst themselves does
not mean that they synchronize to the forcing by light. To study this point, we have
computed the individual periods Ti, i = 1, . . . , N , of the oscillators in the ensemble.
In those cases in which the concentrations do not oscillate with exact periodicity,
we still define the period as the average time between maxima of the dynamical
variables. In Fig. 4 we plot the mean value T̄ = 1

N

∑N

i=1
Ti as a function of σ and
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Figure 2. Main parameters used for characterizing the synchronization of circadian oscil-
lators as a function of the variance σ. (a) the synchrony parameter ρ; (b) the mean T̄ of
the individual periods Ti; (c) the response order parameter R; (d) the maximum real part
of the eigenvalues of the linearized system.

L0 for different values of K. As the dispersion in Ti is small, it turns out that T̄ is
close to the period of the average variable X(t).

Although, by construction, individual neurons have periods that fluctuate around
T = 23.5 h, it turns out that the period of the resulting synchronized oscillations
that occur in the unforced but coupled (L0 = 0, K > 0) case, increases with in-
creasing coupling K. For example, T̄ ≈ 30 h for K = 0.6, mostly independent of the
value of σ. As the forcing sets in, at low values of the coupling strength, the mean
period is now T̄ = 24 h for all values of L0 and σ. As the coupling between neurons
increases, larger values of L0 and/or σ are needed in order for the mean period to
coincide with that of the external forcing. An important feature that emerges from
these plots is that for low light intensity it is possible to achieve a mean period
of 24 h by increasing the neuronal diversity. For example, in the areas at the left
of the different panels of Fig.4, or in panel (b) of Fig.2 corresponding to the case
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Figure 3. Characterization of synchrony for a light signal of square wave form. The syn-
chrony parameter ρ, the mean T̄ of the individual periods Ti and the response order pa-
rameter R (from top to bottom) measured for square wave stimuli of various day lengths
(8h, 12h and 16h, from left to right).

K = 0.6, while identical neurons have periods of ≈ 30 h, increasing σ induces an
adjustment of the period to 24 h. The transition between T̄ = 24 h and T̄ 6= 24 h
is rather sharp, specially for large K. This is a clear manifestation that diversity
indeed is able to improve the response to the external forcing. The same conclusion
about the constructive role of diversity can be reached by looking at the measure
of response R (see Figs. 5 and 2(c)). These figures show that there is a region in
parameter space in which the system response to the periodic light forcing displays
a maximum value as a function of diversity σ. This indicates that it is possible
to improve neuronal synchronization to the daily-varying light input by taking σ
close to an optimal value. Too small or too large diversity will not yield an optimal
response. This is a clear manifestation that diversity indeed is able to improve the
response to the external forcing.

A complementary perspective on this constructive role of diversity is attained
looking at spectral amplification factor, R, from Eq. (2.12). This is a normalized
measure of the amplitude of the oscillation of the neuronal system at the frequency
of the daily forcing. Figures 5 and 2(c) show that there is a region in parameter space
in which the system response to the periodic light forcing displays a maximum value
as a function of diversity σ. In fact this maximum is very large as compared with
the R value at zero diversity, so that one can say that one of the most noticeable
effects of a non-vanishing neuronal diversity is to give the system the capacity to
respond efficiently to the 24h forcing in situations of small or no response at this
frequency in the absence of diversity (the non-diverse neuronal ensemble could be
oscillating at a different frequency, as revealed by high values of ρ). In summary,
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Figure 4. Colour level plots of the mean of the individual periods T̄ of 1000 neurons
under forcing at 24h cycle for the system of Eqs. (2.5–2.9). High light intensity L0 and
high diversity σ assures entrainment of oscillations to external frequency (blue region).
Increasing coupling enlarges the region (yellow) of oscillations at a period larger than that
of the driving force.

it is possible to largely improve neuronal synchronization to the daily-varying light
input by taking σ close to an optimal value. Too small or too large diversity will
not yield an optimal response at this frequency, although the response is generally
larger than for zero diversity.

An external signal of square wave form and with different day lengths lead to
similar results. As can be seen in figure 3 the response R to the external signal
passes through a maximum at a intermediate value of diversity. The mean period
and the synchrony parameter behave as in the case with a pure sinusoidal as the
driving force. Furthermore, the qualitative result is independent of the chosen day
length.

(a) Diversity-induced oscillator death

Why does an increase in the diversity of the oscillators lead to an improved
response to the external forcing? We argue that the main effect of the increase of
the diversity is to take the oscillators into a regime of oscillator death (Ermentrout
1990; Mirollo & Strogatz 1990) in which they can be easily entrained by the vary-
ing part of the forcing. To understand this mechanism we first split the forcing into

a constant (the mean) and a time varying part: L(t) =
L0

2
+

L0

2
sin(ωt). Taking

only the constant part, L(t) =
L0

2
, Figs. 6(a)–(c) show that the oscillators go from

self-sustained oscillations to oscillator death, i.e. the amplitude of the self-sustained
oscillations decreases, as σ increases. Once oscillators are damped, they would re-
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Figure 5. Colour plots of the spectral amplification factor R as defined in Eq. (2.12) in
logarithmic scale. Too high light intensity L0 and too much diversity σ lower the response
of X to the external frequency. This also happens for low light and low diversity (where
the neurons oscillate at a frequency 6= 24 h, see Fig. 4). Between both limits R passes a
local maximum.

spond quasi-linearly to periodic forcing, at least if this forcing is not too large, and
linear oscillators always become synchronized to the external forcing, independently
of their internal frequency. This is consistent with what is seen in figures 6(d)–(f),
where the neurons in the case of low heterogeneity oscillate synchronously with each
other, but their common period is larger than the one of the light forcing. Only
when diversity brings the neurons to oscillator death can all of them be entrained
to the period of the forcing signal. The mechanism is related to the one discussed
by Gonze et al. (2005) and Bernard et al. (2007), but here we stress that neuron
heterogeneity, as opposed to internal neuron parameters and couplings, is enough
to damp the collective neuron oscillations and bring the system to a non-oscillating
state where it can be more easily entrained. It is interesting to note that it has
been shown experimentally for fruitflies that only a subset of the pacemaker neu-
rons sustain cyclic gene expression after changing the laboratory light conditions
to constant darkness, whereas the oscillations of the other pacemaker neurons are
damped out (Veleri et al. 2003). Although this does not reveal the mechanism by
which the oscillations die out it suggests that some of the circadian oscillators do
indeed work in the damped regime, at least in Drosophila.

An alternative way of checking this mechanism based on diversity-induced os-

cillator death is by analyzing the stability of the steady state of the system of Eqs.

(2.5–2.9) when considering a constant forcing L(t) =
L0

2
. The numerical calcula-

tion of the fixed point of the dynamics is greatly simplified by the fact that the
concentrations of the biochemical variables are the same for each one of the N neu-
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Figure 6. Figures (a), (b) and (c) represent the time-dependent amplitude of the Vi variable
for a few selected neurons in the presence of constant light and increasing σ, while Figures
(d), (e) and (f) represent the amplitude of the same neurons with sinusoidal light and
increasing σ. The thin line on the bottom of the graphs is the external light signal. K = 0.6

rons irrespectively of their specific value of τi. The system (2.5–2.9) is linearized
around this steady state and the eigenvalues of the stability matrix computed for
several realizations of diversity parameters τi. In each case, the positive or nega-
tive character of the real part of the eigenvalue with the largest real part indicates
the instability or stability, respectively, of the fixed point solution. In Fig. 7 we
plot the mean of that maximum real part of the eigenvalues averaged over various
realizations of the time scales τi, for N = 200 coupled neurons, as a function of
L0 and σ, and different values of the coupling K (see also panel (d) in Fig.2). In
every diagram we can see that low diversity or low forcing yield an unstable steady
state (yellow region). This is where self-sustained oscillations are observed. A thick
black line in the contour plots indicates a zero real part. The relevance of this line
separating positive from negative maximum average eigenvalues is more apparent
when we note that it also delimits regions of interest in Figs.1, 4 and 5.

In summary, increasing the diversity or the (constant) forcing term decreases (on
average) the maximum eigenvalue of the coupled system and thus a Hopf bifurcation
can be crossed backwards, so that self-oscillations disappear. When applying the
periodic external forcing on the system formed by self-sustained neurons, coherence
with the external frequency is difficult to achieve because there is the competing
effect of mutual neuron synchronization to a different frequency. However, when
the periodic external forcing is applied on the system of damped neurons, they
all synchronize to the external forcing, and thus with each other since this is the
only dynamical regime available to forced damped oscillators (if forcing is not too
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strong to excite further resonances). Increased coupling strength increases the range
of unentrained self-oscillations.

Oscillator death by diversity is not particular to this system. In (Mirollo &
Strogatz 1990) the authors analyze a large system of limit cycle-oscillators with
mean field coupling and randomly distributed frequencies. They proved that when
the coupling is sufficiently strong and the distribution of frequencies has a suffi-
ciently large variance, the system undergoes “amplitude death”. In their approach
the oscillators pull each other off their limit cycles, which is translated into a stable
equilibrium point for the coupled system. Thus, this mechanism suggests that the
quenched noise we introduced in the system “pushes apart” the limit cycles of the
different neurons, so that their competition enlarges the range of parameters where
fixed point behavior is stable.

A qualitative argument explaining the diversity-induced oscillator death in our
system of coupled neurons goes as follows: We know from Gonze et al. (2005) that
a single oscillator can switch from a limit cycle to a stable steady state by adding a
constant mean field (the term containing F in (2.5) but with time-independent F ) of
sufficient strength to Eq. (2.1). A constant light forcing term has the same effect (see
the zero coupling case in fig. 7). Furthermore we have observed that the amplitude of
the oscillations decreases with rising diversity (compare figs. 6), but the mean does
not change. In a system with low diversity we have large oscillations of F around
that mean value. If this value, taken as a constant, determines a stable steady state,
then we argue that the large oscillations lead the system into unstable regions,
whereas, by increasing σ the amplitude is decreased and the concentrations do not
leave neighbourhood of the stable fixed point, thus finding themselves damped all
the time. This is a possible mechanism for the diversity-induced oscillator death

phenomenon.

4. Concluding Remarks

In this work we have analyzed the role of diversity in favoring the entrainment of a
system of coupled circadian oscillators. We introduce non-negligible heterogeneity
in the periods of all neurons in the form of quenched noise. This is achieved by
rescaling the individual neuronal periods by a scaling factor drawn from a normal
distribution. The system response to the light-dark cycle periodicity is studied as
a function of the interneuronal coupling strength, external forcing amplitude and
neuronal heterogeneity.

Most of the cases of order induced by heterogeneity or noise carried out so far
(Gammaitoni et al. 1998; Hänggi & Marchesoni 2009; Tessone et al. 2006, 2007;
Toral et al. 2009; Pikovsky & Kurths 1997; Ullner et al. 2009), emphasize the fact
the diversity directly improves oscillator synchronization. In our case the mechanism
is rather different. Diversity does not improve system synchronization directly. This
is achieved indirectly, by a leading first to a diversity-induced stabilization of the
fixed points of the neurons forming the system. Once steady concentrations are
asymptotically stable, it is much better entrainable by the external forcing, so that
the damped neurons adapt easily to the external forcing (and then, in addition, they
appear as synchronized between them). The synchronization arises therefore not as
a result of a direct diversity-induced neuronal synchronization but indirectly, as a
result of the diversity-induced oscillator death. Our results indicate therefore that
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Figure 7. Colour plots of the maximum real part of the average eigenvalues of system of
Eqs. (2.5–2.9), as a function of σ and L0, at different values of K. Increasing σ or increas-
ing L0 changes this quantity from positive to negative, i.e. transforms the self-sustained
neurons into damped neurons by stabilizing their constant concentrations fixed points.
Rising the coupling enlarges the region of self-sustained oscillations. Averaged from 10
realizations of heterogeneity in 200 neurons.

the right amount of heterogeneity helps the extended system to respond globally
in a more coherent way to the external forcing. In addition to the robustness of
the results against use of non-sinusoidal forcing we have checked that resonances
in the responses to the external forcing and matching of the circadian period to
the external forcing appear in more complex models, such as the 10-variable model
of (Bernard et al. 2007) with diversity in the time scales τi, or the 4-variable model
of (Gonze et al. 2005) with heterogeneity in all the reaction rate parameters νi.
We expect that a similar behavior will be found in models of non-mammalian
clocks like those of Drosophila (Smolen et al. 2004), Arabidopsis (Locke et al. 2005),
Neurospora (Heintzen & Liu 2007) or Cyanobacteria (Dong & Golden 2008).

Of course, it is an open question whether the observed diversity in the periods of
the neurons of the SCN has been tuned by evolution in order to display a maximum
response to the 24 h dark-light natural cycle. A detailed experimental check of our
predictions would require to be able to vary the amount of diversity. In this sense
we suggest the possibility of using chimeric organisms (Low-Zeddies & Takahashi
2001) to introduce diversity in a controlled way.
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Goodwin, B. C., 1965 Oscillatory behavior in enzymatic control processes. Advances
in Enzyme Regulation 3, 425–428, IN1–IN2, 429–430, IN3–IN6, 431–437. (doi:
DOI: 10.1016/0065-2571(65)90067-1).

Hänggi, P. & Marchesoni, F., 2009 Special issue: Stochastic resonance. Eur. Phys.
J. B 69. (doi:10.1140/epjb/e2009-00163-x).

Hastings, M. & Herzog, E., 2004 Clock genes, oscillators, and cellular networks in
the suprachiasmatic nuclei. Journal of Biological Rhythms 19, 400–413.

Heintzen, C. & Liu, Y., 2007, The Neurospora crassa Circadian Clock. Advances
in Genetics 58, 25–66.

Herzog, E., Aton, S., Numano, R., Sakaki, Y. & Tei, H., 2004 Temporal precision
in the mammalian circadian system: a reliable clock from less reliable neurons.
Journal of Biological Rhythms 19, 35–46.

Honma, S., Nakamura, W., Shirakawa, T. & Honma, K., 2004 Diversity in the
circadian periods of single neurons of the rat suprachiasmatic nucleus depends
on nuclear structure and intrinsic period. Neuroscience Letters 358, 173–176.
(doi:DOI: 10.1016/j.neulet.2004.01.022).

Leloup, J. C., Goldbeter, A., 2003 Toward a detailed computational model for the
mammalian circadian clock. Proceedings of the National Academy of Sciences of
the United States of America 100, 7051–7056.

Locke, J. C. W., Millar, A. J. & Turner, M. S., 2005 Modelling genetic networks with
noisy and varied experimental data: the circadian clock in Arabidopsis thaliana.
Journal of Theoretical Biology 234, 383–393.

Low-Zeddies, S. S. & Takahashi, J. S., 2001 Chimera Analysis of the Clock Mu-
tation in Mice Shows that Complex Cellular Integration Determines Circadian
Behaviour. Cell 105, 25–42.

Maywood, E. S., Reddy, A. B., Wong, G. K., O’Neill, J. S., O’Brien, J. A., McMa-
hon, D. G., Harmar, A. J., Okamura, H. & Hastings, M. H., 2006 Synchronization
and maintenance of timekeeping in suprachiasmatic circadian clock cells by neu-
ropeptidergic signaling. Current Biology 16, 599–605.

Mirollo, R. & Strogatz, S., 1990 Synchronization of pulse-coupled biological oscil-
lators. SIAM J. Appl. Math. 50, 1645.

Moore, R., Speh, J. & Leak, R., 2002 Suprachiasmatic nucleus organization. Cell
and Tissue Research 309, 89–98.

Neiman, A., Saparin, P. I. & Stone, L., 1997 Coherence resonance at noisy precursors
of bifurcations in nonlinear dynamical systems. Phys. Rev. E 56, 270–273. (doi:
10.1103/PhysRevE.56.270).

Pikovsky, A. & Kurths, J., 1997 Coherence resonance in a noise-driven excitable
system. Phys. Rev. Lett. 78, 775.

Article submitted to Royal Society



Synchronization and entrainment of coupled circadian oscillators 17

Pol, A. V. D. & Dudek, F., 1993 Cellular communication in the circadian clock, the
suprachiasmatic nucleus. Neuroscience 56, 793–811. (doi:DOI: 10.1016/0306-
4522(93)90128-3).

Reppert, S. & Weaver, D., 2002 Coordination of circadian timing in mammals.
Nature 418, 935–941.

Schaap, J., Albus, H., van der Leest, H. T., Eilers, P. H. C., Détári, L. & Meijer,
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