92 research outputs found
Multimodal X-ray imaging of nanocontainer-treated macrophages and calcium distribution in the perilacunar bone matrix
Studies of biological systems typically require the application of several complementary methods able to yield statistically-relevant results at a unique level of sensitivity. Combined X-ray fluorescence and ptychography offer excellent elemental and structural imaging contrasts at the nanoscale. They enable a robust correlation of elemental distributions with respect to the cellular morphology. Here we extend the applicability of the two modalities to higher X-ray excitation energies, permitting iron mapping. Using a long-range scanning setup, we applied the method to two vital biomedical cases. We quantified the iron distributions in a population of macrophages treated with Mycobacterium-tuberculosis-targeting iron-oxide nanocontainers. Our work allowed to visualize the internalization of the nanocontainer agglomerates in the cytosol. From the iron areal mass maps, we obtained a distribution of antibiotic load per agglomerate and an average areal concentration of nanocontainers in the agglomerates. In the second application we mapped the calcium content in a human bone matrix in close proximity to osteocyte lacunae (perilacunar matrix). A concurrently acquired ptychographic image was used to remove the mass-thickness effect from the raw calcium map. The resulting ptychography-enhanced calcium distribution allowed then to observe a locally lower degree of mineralization of the perilacunar matrix
GJETC report 2020 : German-Japanese cooperation in energy research ; supporting the closure of implementation gaps ; key results and policy recommendations
The German-Japanese Energy Transition Council (GJETC) was established in 2016 by experts from research institutions, energy policy think tanks, and practitioners in Germany and Japan.
The objectives and main activities of the Council and the supporting secretariats are to identify and analyze current and future issues regarding policy frameworks, markets, infrastructure, and technological developments in the energy transition, and to hold Council meetings to exchange ideas and propose better policies and strategies. In its second project phase (2018-2020), the GJETC had six members from academia on the Japanese side, and eight members on the German side, with one Co-Chair from each country.
From October 2018 to March 2020, the GJETC worked on and debated six topics:
1) Digitalization and the energy transition. 2) Hydrogen society. 3) Review of German and Japanese long-term energy scenarios and their evaluation mechanism. 4) Buildings, energy efficiency, heating/cooling. 5) Integration costs of renewable energies. 6) Transport and sector coupling.
The outputs and the recommendations of the second phase of the GJETC are summarized in this report
GJETC report 2018 : intensified German-Japanese cooperation in energy research ; key results and policy recommendations
The challenges and also potentials of the energy transition are tremendous in Germany, as well as in Japan. Sometimes, structures of the old energy world need "creative destruction" to clear the way for innovations for a decarbonized, low-risk energy system. In these times of disruptive changes, a constructive and sometimes controversial dialog within leading industrial nation as Japan and Germany over the energy transition is even more important. The German-Japanese Energy Transition Council (GJETC) released a summarizing report for the first project phase 2016-2018. It includes jointly formulated recommendations for politics as well as a controversial dialogue part.
The Council jointly states and recommends that:
Ambitious long-term targets and strategies for a low-carbon energy system must be defined and ambitiously implemented; Germany and Japan as high technology countries need to take the leadership.
Both countries will have to restructure their energy systems substantially until 2050 while maintaining their competitiveness and securing energy supply.
Highest priority is given to the forced implementation of efficiency technologies and renewable energies, despite different views on nuclear energy.
In both countries all relevant stakeholders - but above all the decision-makers on all levels of energy policy - need to increase their efforts for a successful implementation of the energy transition.
Design of the electricity market needs more incentives for flexibility options and for the extensive expansion of variable power generation, alongside with strategies for cost reduction for electricity from photovoltaic and wind energy.
The implementation gap of the energy efficiency needs to be closed by an innovative energy policy package to promote the principle of "Energy Efficiency First".
Synergies and co-benefits of an enhanced energy and resource efficiency policy need to be realized.
Co-existence of central infrastructure and the growing diversity of the activities for decentralization (citizens funding, energy cooperatives, establishment of public utility companies) should be supported.
Scientific cooperation can be intensified by a joint working group for scenarios and by the establishment of an academic exchange program
Sexual Size Dimorphism and Body Condition in the Australasian Gannet
Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD
Gridshell as Formwork: Proof of Concept for a New Technique for Constructing Thin Concrete Shells Supported by Gridshell as Formwork
This paper documents an empirical experiment conducted in August 2014 as proof of concept for a new method of constructing concrete shells. An idea initially presented by the first author in 2012, it uses redeployable gridshells onto which fabric is midstressed and concrete applied. Primarily, this system addresses key issues that led to their decline in use: construction methods/formwork systems were not reusable, nor were they easily customizable to create different shapes. Employing 27 man-hours over seven days, two concrete shells were achieved using the same reusable and reconfigurable formwork. Lightweight (0.6 kg) PVC gridshell formwork supported 106.92 kg of concrete to create a concrete shell that covered 1.11 m2 (floor area). The construction verifies a low-cost (ÂŁ6.06/m2) efficiency and material utilization in the construction of very strong wide-spanning thin concrete structures. Detailed analysis of formwork behavior during construction and detailed measurements of resultant shell results prove this new method of deployable gridshells as a reusable and reconfigurable formwork to construct very strong concrete shells very quickly. Whilst the emphasis of the research focused on the construction process, the vaults were tested and sustained a failure load of 4.2 kN (4.32 times their deadweight), applied as a point load at the crown
Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease
Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors
Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes.
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi ( Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, KĂŒnzler M, Földi C, VirĂĄgh M, Ohm RA, Hennicke F, BĂĄlint B, Csernetics Ă, HegedĂŒs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, SzathmĂĄri B, Varga T, Wu W, Yang X, MerĂ©nyi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01
Hemosporidian blood parasites in seabirdsâa comparative genetic study of species from Antarctic to tropical habitats
Whereas some bird species are heavily affected by blood parasites in the wild, others reportedly are not. Seabirds, in particular, are often free from blood parasites, even in the presence of potential vectors. By means of polymerase chain reaction, we amplified a DNA fragment from the cytochrome b gene to detect parasites of the genera Plasmodium, Leucocytozoon, and Haemoproteus in 14 seabird species, ranging from Antarctica to the tropical Indian Ocean. We did not detect parasites in 11 of these species, including one Antarctic, four subantarctic, two temperate, and four tropical species. On the other hand, two subantarctic species, thin-billed prions Pachyptila belcheri and dolphin gulls Larus scoresbii, were found infected. One of 28 thin-billed prions had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites species isolated from passeriform birds such as Haemoproteus lanii, Haemoproteus magnus, Haemoproteus fringillae, Haemoproteus sylvae, Haemoproteus payevskyi, and Haemoproteus belopolskyi. In addition, we found a high parasite prevalence in a single tropical species, the Christmas Island frigatebird Fregata andrewsi, where 56% of sampled adults were infected with Haemoproteus. The latter formed a monophyletic group that includes a Haemoproteus line from Eastern Asian black-tailed gulls Larus crassirostris. Our results are in agreement with those showing that (a) seabirds are poor in hemosporidians and (b) latitude could be a determining factor to predict the presence of hemosporidians in birds. However, further studies should explore the relative importance of extrinsic and intrinsic factors on parasite prevalence, in particular using phylogenetically controlled comparative analyses, systematic sampling and screening of vectors, and within-species comparisons
Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of repurposing drug libraries containing 5953 individual compounds against the SARS-CoV-2 main protease (Mpro), which is a potent drug target as it is essential for the virus replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. Interestingly, two compounds bind outside the active site to the native dimer interface in close proximity to the S1 binding pocket. Another compound binds in a cleft between the catalytic and dimerization domain of Mpro. Neither binding site is related to the enzymatic active site and both represent attractive targets for drug development against SARS-CoV-2. This X-ray screening approach thus has the potential to help deliver an approved drug on an accelerated time-scale for this and future pandemics
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
- âŠ