8,406 research outputs found

    Myocardium wall thickness transducer and measuring method

    Get PDF
    A miniature transducer for measuring changes of thickness of the myocardium is described. The device is easily implantable without traumatizing the subject, without affecting the normal muscle behavior, and is removable and implantable at a different muscle location. Operating features of the device are described

    Catheter tip force transducer for cardiovascular research

    Get PDF
    A force transducer for measuring dynamic force activity within the heart of a subject essentially consists of a U-shaped beam of low elastic compliance material. Two lines extend from the beams's legs and a long coil spring is attached to the beam. A strain gauge is coupled to one of the beam's legs to sense deflections thereof. The beam with the tines and most of the spring are surrounded by a flexible tube, defining a catheter, which is insertable into a subject's heart through an appropriate artery. The tines are extractable from the catheter for implantation into the myocardium by pushing on the end of the spring which extends beyond the external end of the catheter

    The Starburst in the Central Kiloparsec of Markarian 231

    Get PDF
    We present VLBA observations at 0.33 and 0.61 GHz, and VLA observations between 5 and 22 GHz, of subkiloparsec scale radio emission from Mrk 231. In addition to jet components clearly associated with the AGN, we also find a smooth extended component of size 100 - 1000 pc most probably related to the purported massive star forming disk in Mrk 231. The diffuse radio emission from the disk is found to have a steep spectrum at high frequencies, characteristic of optically thin synchrotron emission. The required relativistic particle density in the disk can be produced by a star formation rate of 220 Msolar/yr in the central kiloparsec. At low frequencies the disk is absorbed, most likely by ionized gas with an emission measure of 8 x 10^5 pc cm-6. We have also identified 4 candidate radio supernovae that, if confirmed, represent direct evidence for ongoing star formation in the central kiloparsec.Comment: in press at ApJ for v. 519 July 1999, 14 page LaTeX document includes 6 postscript figure

    Chebyshev approach to quantum systems coupled to a bath

    Full text link
    We propose a new concept for the dynamics of a quantum bath, the Chebyshev space, and a new method based on this concept, the Chebyshev space method. The Chebyshev space is an abstract vector space that exactly represents the fermionic or bosonic bath degrees of freedom, without a discretization of the bath density of states. Relying on Chebyshev expansions the Chebyshev space representation of a bath has very favorable properties with respect to extremely precise and efficient calculations of groundstate properties, static and dynamical correlations, and time-evolution for a great variety of quantum systems. The aim of the present work is to introduce the Chebyshev space in detail and to demonstrate the capabilities of the Chebyshev space method. Although the central idea is derived in full generality the focus is on model systems coupled to fermionic baths. In particular we address quantum impurity problems, such as an impurity in a host or a bosonic impurity with a static barrier, and the motion of a wave packet on a chain coupled to leads. For the bosonic impurity, the phase transition from a delocalized electron to a localized polaron in arbitrary dimension is detected. For the wave packet on a chain, we show how the Chebyshev space method implements different boundary conditions, including transparent boundary conditions replacing infinite leads. Furthermore the self-consistent solution of the Holstein model in infinite dimension is calculated. With the examples we demonstrate how highly accurate results for system energies, correlation and spectral functions, and time-dependence of observables are obtained with modest computational effort.Comment: 18 pages, 13 figures, to appear in Phys. Rev.

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    An inquiry-based learning approach to teaching information retrieval

    Get PDF
    The study of information retrieval (IR) has increased in interest and importance with the explosive growth of online information in recent years. Learning about IR within formal courses of study enables users of search engines to use them more knowledgeably and effectively, while providing the starting point for the explorations of new researchers into novel search technologies. Although IR can be taught in a traditional manner of formal classroom instruction with students being led through the details of the subject and expected to reproduce this in assessment, the nature of IR as a topic makes it an ideal subject for inquiry-based learning approaches to teaching. In an inquiry-based learning approach students are introduced to the principles of a subject and then encouraged to develop their understanding by solving structured or open problems. Working through solutions in subsequent class discussions enables students to appreciate the availability of alternative solutions as proposed by their classmates. Following this approach students not only learn the details of IR techniques, but significantly, naturally learn to apply them in solution of problems. In doing this they not only gain an appreciation of alternative solutions to a problem, but also how to assess their relative strengths and weaknesses. Developing confidence and skills in problem solving enables student assessment to be structured around solution of problems. Thus students can be assessed on the basis of their understanding and ability to apply techniques, rather simply their skill at reciting facts. This has the additional benefit of encouraging general problem solving skills which can be of benefit in other subjects. This approach to teaching IR was successfully implemented in an undergraduate module where students were assessed in a written examination exploring their knowledge and understanding of the principles of IR and their ability to apply them to solving problems, and a written assignment based on developing an individual research proposal

    Description of recent large-qq neutron inclusive scattering data from liquid 4^4He

    Get PDF
    We report dynamical calculations for large-qq structure functions of liquid 4^4He at TT=1.6 and 2.3 K and compare those with recent MARI data. We extend those calculations far beyond the experimental range q\le 29\Ain in order to study the approach of the response to its asymptotic limit for a system with interactions having a strong short-range repulsion. We find only small deviations from theoretical 1/q1/q behavior, valid for smooth VV. We repeat an extraction by Glyde et al of cumulant coefficients from data. We argue that fits determine the single atom momentum distribution, but express doubt as to the extraction of meaningful Final State Interaction parameters.Comment: 37 pages, 13 postscript fig

    DEXA-Measured VAT Robustly Predicts Impaired Glucose Tolerance and Metabolic Syndrome in Obese Women

    Get PDF
    Abdominal visceral adiposity (VAT) has been shown to be an independent risk factor for metabolic and cardiovascular disease. Using enCORE analysis version 13.6 on a GE Lunar iDXA, a new fully automated analysis software to measure VAT, we determined the strength of associations between DEXA-derived VAT and other known indicators for diabetes and cardiovascular disease risk in Caucasian and African American obese women. We collected anthropometrics, vital signs, lipid profile, and DXA whole body composition scan for 229 subjects with BMI 30.0 – 49.9 kg/m2 & age 21 to 69 y. We then performed the non-parametric Spearman correlation analysis and found that in subjects overall, DEXA-VAT is positively associated with triglyceride, fasting glucose, fasting insulin, and HOMA-IR, and negatively associated with HDL. Among all anthropometric, body composition and cardiometabolic variables, DEXA-VAT was the most robust predictor of impaired glucose tolerance (IGT) and metabolic syndrome (MetSx) in binary regression analysis, even after adjusting for race. LASSO regression after adjusting for covariates that best predicted IGT and MetSx showed that HOMAIR and DEXA-VAT most significantly predicted IGT (p\u3c0.001, p\u3c0.001, respectively), and DEXA-VAT most significantly predicted MetSx (p\u3c0.001). These observations have implications for VAT associated risk in diabetes and cardiovascular disease

    Considerations on the quantum double-exchange Hamiltonian

    Full text link
    Schwinger bosons allow for an advantageous representation of quantum double-exchange. We review this subject, comment on previous results, and address the transition to the semiclassical limit. We derive an effective fermionic Hamiltonian for the spin-dependent hopping of holes interacting with a background of local spins, which is used in a related publication within a two-phase description of colossal magnetoresistant manganites.Comment: 7 pages, 3 figure
    corecore