18,193 research outputs found

    Misfit strain relaxation and dislocation formation in supercritical strained silicon on virtual substrates

    Get PDF
    Relaxation of strained silicon on 20% linear graded virtual substrates was quantified using high resolution x-ray diffraction and a defect etching technique. The thickness of strained silicon was varied between 10 and 180 nm. Relaxation was observed in layers below the critical thickness but increased to only 2% relaxation in the thickest layers even with annealings up to 950 °C. Cross-sectional transmission electron microscopy revealed stacking faults present in layers thicker than 25 nm, and nucleated 90° Shockley partial dislocations forming microtwins in the thickest layer. These features are implicated in the impediment of the relaxation process

    Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates

    Get PDF
    Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain

    Microphotonic parabolic light directors fabricated by two-photon lithography

    Get PDF
    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 μm high and 10 μm in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs

    Detection of lithium in nearby young late-M dwarfs

    Full text link
    Late M-type dwarfs in the solar neighborhood include a mixture of very low-mass stars and brown dwarfs which is difficult to disentangle due to the lack of constraints on their age such as trigonometric parallax, lithium detection and space velocity. We search for young brown dwarf candidates among a sample of 28 nearby late-M dwarfs with spectral types between M5.0 and M9.0, and we also search for debris disks around three of them. Based on theoretical models, we used the color IJI-J, the JJ-band absolute magnitude and the detection of the Li I 6708 A˚\AA doublet line as a strong constraint to estimate masses and ages of our targets. For the search of debris disks, we observed three targets at submillimeter wavelength of 850 μ\mum. We report here the first clear detections of lithium absorption in four targets and a marginal detection in one target. Our mass estimates indicate that two of them are young brown dwarfs, two are young brown dwarf candidates and one is a young very low-mass star. The closest young field brown dwarf in our sample at only \sim15 pc is an excellent benchmark for further studying physical properties of brown dwarfs in the range 100-150 Myr. We did not detect any debris disks around three late-M dwarfs, and we estimated upper limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Relating imperatives to action

    Get PDF
    The aim of this chapter is to provide an analysis of the use of logically complex imperatives, in particular, imperatives of the form Do A1 or A2 and Do A, if B. We argue for an analysis of imperatives in terms of classical logic which takes into account the influence of background information on imperatives. We show that by doing so one can avoid some counter-intuitive results which have been associated with analyses of imperatives in terms of classical logic. In particular, I address Hamblin's observations concerning rule-like imperatives and Ross' Paradox. The analysis is carried out within an agent-based logical framework. This analysis explicates what it means for an agent to have a successful policy for action with respect to satisfying his or her commitments, where some of these commitments have been introduced as a result of imperative language use

    Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies

    Get PDF
    Biosorbents are an alternative pollutant adsorbent, usually sourced from waste biomass and requiring little to no treatment. This makes them cheaper than conventional adsorbents. In this paper, green pea (Pisum sativum) haulm was used as a biosorbent for the adsorption of methylene blue dye. The potential application of pea haulm as a biosorbent has not been investigated before. Characterisation using scanning electron microscopy, infrared spectroscopy and thermal gravitational analysis showed the surface to be coarse, detected functional groups important for adsorption and identified the composition of key biomass components. The effects of particle size, contact time, agitation, dosage, solution pH, temperature and initial dye concentration on the removal of MB by pea haulm were investigated. Using the data from these studies, the best fitting kinetic and isotherm models were found and the thermodynamic properties were identified. The maximum theoretical adsorption capacity was 167 mg/g, which was relatively high compared to other recent biosorbent studies. The pseudo-second-order adsorption kinetic and Freundlich adsorption isotherm models were the best fitting models. The biosorption process was exothermic and spontaneous at low temperatures. It was concluded that pea haulm was an effective adsorbent of methylene blue and could perhaps find application in wastewater treatment

    Microwave-Assisted Hydrothermal Carbonisation of Waste Biomass: The Effect of Process Conditions on Hydrochar Properties

    Get PDF
    Hydrochars are an alternative form of biochar produced by hydrothermal carbonisation (HTC), a potentially cheaper and greener method. In this paper, the effect of multiple variables on hydrochar properties was investigated. Waste biomass was converted to hydrochar via microwave-assisted hydrothermal carbonisation. The variables were temperature, solution ratio (water-biomass ratio), time, particle size, pH and acetone washing. The measured properties were yield, carbon, oxygen and ash content, higher heating value (HHV), carbon and energy recovery and dye and water adsorption. Feedstock significance was investigated using apple, wheat, barley, oat and pea straw. The investigation into this specific combination of variables and feedstock has not been done before. HTC increased carbon content (~60%), HHV (~24 MJ/kg) and water adsorption and reduced oxygen content and dye adsorption. Thermal analysis suggested hydrochars were not suitable for sequestration. Decreasing the solution ratio was the most significant factor in increasing yield, carbon recovery and energy yield. Increasing the temperature was the most significant factor in increasing carbon and decreasing oxygen content. This affected HHV, with higher temperatures producing a higher energy material, surpassing brown coal. Hydrochars produced at a high solution ratio, temperature and times showed the best carbonisation. Smaller particle size increased yield and carbonisation but increased ash content. Low solution pH increased carbon content, HHV and water adsorption but lowered yield, carbon recovery, energy yield, dye adsorption and oxygen and ash content. High pH increased ash content and dye adsorption but lowered yield, carbon recovery, energy yield and dye adsorption. Acetone decreased yield, carbon recovery, energy yield, carbon content and HHV but increased oxygen, ash content and dye and water adsorption. Barley biomass showed the highest yield and carbon recovery, and pea showed the highest energy yield and HHV. Apple showed the highest carbon content. All the hydrochars showed promise as solid fuels, a soil additive and a precursor for activated carbon but lacked high adsorption for pollutant adsorbents and stability for carbon sequestration

    Observations of the Crab Nebula with H.E.S.S. Phase II

    Full text link
    The High Energy Stereoscopic System (H.E.S.S.) phase I instrument was an array of four 100m2100\,\mathrm{m}^2 mirror area Imaging Atmospheric Cherenkov Telescopes (IACTs) that has very successfully mapped the sky at photon energies above 100\sim 100\,GeV. Recently, a 600m2600\,\mathrm{m}^2 telescope was added to the centre of the existing array, which can be operated either in standalone mode or jointly with the four smaller telescopes. The large telescope lowers the energy threshold for gamma-ray observations to several tens of GeV, making the array sensitive at energies where the Fermi-LAT instrument runs out of statistics. At the same time, the new telescope makes the H.E.S.S. phase II instrument. This is the first hybrid IACT array, as it operates telescopes of different size (and hence different trigger rates) and different field of view. In this contribution we present results of H.E.S.S. phase II observations of the Crab Nebula, compare them to earlier observations, and evaluate the performance of the new instrument with Monte Carlo simulations.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland
    corecore