29,351 research outputs found

    Group Divisible Codes and Their Application in the Construction of Optimal Constant-Composition Codes of Weight Three

    Full text link
    The concept of group divisible codes, a generalization of group divisible designs with constant block size, is introduced in this paper. This new class of codes is shown to be useful in recursive constructions for constant-weight and constant-composition codes. Large classes of group divisible codes are constructed which enabled the determination of the sizes of optimal constant-composition codes of weight three (and specified distance), leaving only four cases undetermined. Previously, the sizes of constant-composition codes of weight three were known only for those of sufficiently large length.Comment: 13 pages, 1 figure, 4 table

    Error Function Attack of chaos synchronization based encryption schemes

    Full text link
    Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the Error Function Attack is presented systematically and used to evaluate system security. We define a quantitative measure (Quality Factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from Quality Factor

    The MICZ-Kepler Problems in All Dimensions

    Full text link
    The Kepler problem is a physical problem about two bodies which attract each other by a force proportional to the inverse square of the distance. The MICZ-Kepler problems are its natural cousins and have been previously generalized from dimension three to dimension five. In this paper, we construct and analyze the (quantum) MICZ-Kepler problems in all dimensions higher than two.Comment: A minor technical error in section 5.2 (see footnote 6) is correcte

    Optimal Memoryless Encoding for Low Power Off-Chip Data Buses

    Full text link
    Off-chip buses account for a significant portion of the total system power consumed in embedded systems. Bus encoding schemes have been proposed to minimize power dissipation, but none has been demonstrated to be optimal with respect to any measure. In this paper, we give the first provably optimal and explicit (polynomial-time constructible) families of memoryless codes for minimizing bit transitions in off-chip buses. Our results imply that having access to a clock does not make a memoryless encoding scheme that minimizes bit transitions more powerful.Comment: Proceedings of the 2006 IEEE/ACM international Conference on Computer-Aided Design (San Jose, California, November 05 - 09, 2006). ICCAD '06. ACM, New York, NY, 369-37

    Optimal Partitioned Cyclic Difference Packings for Frequency Hopping and Code Synchronization

    Full text link
    Optimal partitioned cyclic difference packings (PCDPs) are shown to give rise to optimal frequency-hopping sequences and optimal comma-free codes. New constructions for PCDPs, based on almost difference sets and cyclic difference matrices, are given. These produce new infinite families of optimal PCDPs (and hence optimal frequency-hopping sequences and optimal comma-free codes). The existence problem for optimal PCDPs in Z3m{\mathbb Z}_{3m}, with mm base blocks of size three, is also solved for all m≢8,16(mod24)m\not\equiv 8,16\pmod{24}.Comment: to appear in IEEE Transactions on Information Theor

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w12w-1. When d2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w12w-1 are also determined for all w6w\leq 6, except in two cases.Comment: 12 page

    Multiple crossings of a very thin plasma sheet in the Earth's magnetotail

    Get PDF
    High resolution magnetic field, plasma and energetic particle data from the IMP-8 spacecraft were studied for multiple crossings of the Earth's magnetotail plasma sheet when it becomes thin during magnetospheric substorms. Traversals recur on a time scale of several minutes and they are associated with high velocity plasma flows that are usually directed tailward but are occasionally directed earthward for brief intervals. Observations are explained by rapid oscillations of a plasma sheet that is only a few thousand km thick, a dimension comparable to the gyroradius of energetic protons. Differences in the angular distributions of the two energies indicate that the higher energy protons are preferentially located on field lines deeper in the tail lobe. A neutral line acceleration model is supported tailward streaming energetic electrons which are occasionally present at the lobe plasma sheet interface

    Lambda and Anti-Lambda Hypernuclei in Relativistic Mean-field Theory

    Full text link
    Several aspects about Λ\Lambda-hypernuclei in the relativistic mean field theory, including the effective Λ\Lambda-nucleon coupling strengths based on the successful effective nucleon-nucleon interaction PK1, hypernuclear magnetic moment and Λˉ\bar\Lambda-hypernuclei, have been presented. The effect of tensor coupling in Λ\Lambda-hypernuclei and the impurity effect of Λˉ\bar\Lambda to nuclear structure have been discussed in detail.Comment: 8 pages, 2 figures, Proceedings of the Sendai International Symposium "Strangeness in Nuclear and Hadronic Systems SENDAI08

    MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver

    Get PDF
    MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock–bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock–bubble, shock–droplet, and shock–water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas–liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock–bubble-vessel-wall and acoustic–bubble-net interactions are used to demonstrate the full capabilities of MFC
    corecore