The concept of group divisible codes, a generalization of group divisible
designs with constant block size, is introduced in this paper. This new class
of codes is shown to be useful in recursive constructions for constant-weight
and constant-composition codes. Large classes of group divisible codes are
constructed which enabled the determination of the sizes of optimal
constant-composition codes of weight three (and specified distance), leaving
only four cases undetermined. Previously, the sizes of constant-composition
codes of weight three were known only for those of sufficiently large length.Comment: 13 pages, 1 figure, 4 table