13,286 research outputs found

    Distribution of Capillary Transit Times in Isolated Lungs of Oxygen-Tolerant Rats

    Get PDF
    Rats pre-exposed to 85% O2 for 5–7 days tolerate the otherwise lethal effects of 100% O2. The objective was to evaluate the effect of rat exposure to 85% O2 for 7 days on lung capillary mean transit time (t¯c) and distribution of capillary transit times (h c(t)). This information is important for subsequent evaluation of the effect of this hyperoxia model on the redox metabolic functions of the pulmonary capillary endothelium. The venous concentration vs. time outflow curves of fluorescein isothiocyanate labeled dextran (FITC-dex), an intravascular indicator, and coenzyme Q1 hydroquinone (CoQ1H2), a compound which rapidly equilibrates between blood and tissue on passage through the pulmonary circulation, were measured following their bolus injection into the pulmonary artery of isolated perfused lungs from rats exposed to room air (normoxic) or 85% O2 for 7 days (hyperoxic). The moments (mean transit time and variance) of the measured FITC-dex and CoQ1H2 outflow curves were determined for each lung, and were then used in a mathematical model [Audi et al. J. Appl. Physiol. 77: 332–351, 1994] to estimate t¯c and the relative dispersion (RDc) of h c(t). Data analysis reveals that exposure to hyperoxia decreases lung t¯c by 42% and increases RDc, a measure h c(t) heterogeneity, by 40%

    Inaccuracies in plasma oxytocin extraction and enzyme immunoassay techniques

    Get PDF
    Numerous studies have reported extensive associations between plasma oxytocin (OXT) concentrations and various human physiological and neurobehavioral processes. Measurement of OXT is fraught with difficulty due to its low molecular weight and plasma concentrations, with no consensus as to the optimal conditions for pre-analytical sample extraction, standards for immunoassay validation or the ideal protease inhibitors to prevent OXT degradation. Previous attempts at determining the efficacy of various purification techniques such as solid phase extraction (SPE) or ultrafiltration have only utilized human plasma samples, making it difficult to dissect out whether the effect of interference comes from the extraction process itself or cross-reactivity with other proteins. By testing these on pure OXT solutions, we demonstrate poor recovery efficacy and reliability of reversed phase SPE (maximum 58.1%) and ultrafiltration (<1%) techniques, and the potential for the former to introduce interference into enzyme immunoassay (EIA) measurements. The clonality of antibodies used in EIA kits also potentially contributes to the differences in the readings obtained, and we validate an EIA kit which did not require pre-analytical sample extraction with low cross-reactivity and high reliability (intraclass correlation coefficient 0.980 (95% CI 0.896–0.999). Biochemical techniques used for measuring plasma OXT concentrations must therefore be internally validated prior to translation into clinical studies

    Superconducting Pairing Symmetries in Anisotropic Triangular Quantum Antiferromagnets

    Full text link
    Motivated by the recent discovery of a low temperature spin liquid phase in layered organic compound κ\kappa-(ET)2_2Cu2_2(CN)3_3 which becomes a superconductor under pressure, we examine the phase transition of Mott insulating and superconducting (SC) states in a Hubbard-Heisenberg model on an anisotropic triangular lattice. We use a renormalized mean field theory to study the Gutzwiller projected BCS wavefucntions. The half filled electron system is a Mott insulator at large on-site repulsion UU, and is a superconductor at a moderate UU. The symmetry of the SC state depends on the anisotropy, and is gapful with dx2−y2+idxyd_{x^2-y^2}+id_{xy} symmetry near the isotropic limit and is gapless with dx2−y2d_{x^2-y^2} symmetry at small anisotropy ratio.Comment: 6 pages, 5 figure

    Gossamer Superconductivity near Antiferromagnetic Mott Insulator in Layered Organic Conductors

    Get PDF
    Layered organic superconductors are on the verge of the Mott insulator. We use Gutzwiller variational method to study a Hubbard model including a spin exchange coupling term. The ground state is found to be a Gossamer superconductor at small on-site Coulomb repulsion U and an antiferromagnetic Mott insulator at large U, separated by a first order phase transition. Our theory is qualitatively consistent with major experiments reported in organic superconductors.Comment: 5 pages, 3 figure

    First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering

    Get PDF
    We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.Comment: 5 pages, 4 figures. Accepted by PR
    • …
    corecore