52,792 research outputs found
Integration of crosswind forces into train dynamic modelling
In this paper a new method is used to calculate unsteady wind loadings acting on a railway vehicle. The method takes input data from wind tunnel testing or from computational fluid dynamics simulations (one example of each is presented in this article), for aerodynamic force and moment coefficients and combines these with fluctuating wind velocity time histories and train speed to produce wind force time histories on the train. This method is fast and efficient and this has allowed the wind forces to be applied to a vehicle dynamics simulation for a long length of track.
Two typical vehicles (one passenger, one freight) have been modelled using the vehicle dynamics simulation package ‘VAMPIRE®’, which allows detailed modelling of the vehicle suspension and wheel—rail contact. The aerodynamic coefficients of the passenger train have been obtained from wind tunnel tests while those of the freight train have been obtained through fluid dynamic computations using large-eddy simulation. Wind loadings were calculated for the same vehicles for a range of average wind speeds and applied to the vehicle models using a user routine within the VAMPIRE package. Track irregularities measured by a track recording coach for a 40 km section of the main line route from London to King's Lynn were used as input to the vehicle simulations.
The simulated vehicle behaviour was assessed against two key indicators for derailment; the Y/Q ratio, which is an indicator of wheel climb derailment, and the Δ Q/Q value, which indicates wheel unloading and therefore potential roll over. The results show that vehicle derailment by either indicator is not predicted for either vehicle for any mean wind speed up to 20 m/s (with consequent gusts up to around 30 m/s). At a higher mean wind speed of 25 m/s derailment is predicted for the passenger vehicle and the unladen freight vehicle (but not for the laden freight vehicle)
Role of noncoding RNA in vascular remodelling
Purpose of review: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are becoming fundamentally important in the pathophysiology relating to injury-induced vascular remodelling. We highlight recent studies that demonstrate the involvement of ncRNAs in vein graft disease, in in-stent restenosis and in pulmonary arterial hypertension, with a particular focus on endothelial cell and vascular smooth muscle cell function. We also briefly discuss the emerging role of exosomal-derived ncRNAs and how this mechanism impacts on vascular function.
Recent findings: ncRNAs have been described as novel regulators in the pathophysiology of vascular injury, inflammation, and vessel wall remodelling. In particular, several studies have demonstrated that manipulation of miRNAs can reduce the burden of pathological vascular remodelling. Such studies have also shown that exosomal miRNA-mediated, cell-to-cell communication between endothelial cells and vascular smooth muscle cells is critical in the disease process. In addition to miRNAs, lncRNAs are emerging as regulators of vascular function in health and disease. Although lncRNAs are complex in both their sheer numbers and mechanisms of action, identifying their contribution to vascular disease is essential.
Summary: Given the important roles of ncRNAs in vascular injury and remodelling together will their capacity for cell-to-cell communication, manipulating ncRNA might provide novel therapeutic interventions
A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow
Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed
Directly comparing coronal and solar wind elemental fractionation
As the solar wind propagates through the heliosphere, dynamical processes
irreversibly erase the signatures of the near-Sun heating and acceleration
processes. The elemental fractionation of the solar wind should not change
during transit however, making it an ideal tracer of these processes. We aimed
to verify directly if the solar wind elemental fractionation is reflective of
the coronal source region fractionation, both within and across different solar
wind source regions. A backmapping scheme was used to predict where solar wind
measured by the Advanced Composition Explorer (ACE) originated in the corona.
The coronal composition measured by the Hinode Extreme ultraviolet Imaging
Spectrometer (EIS) at the source regions was then compared with the in-situ
solar wind composition. On hourly timescales there was no apparent correlation
between coronal and solar wind composition. In contrast, the distribution of
fractionation values within individual source regions was similar in both the
corona and solar wind, but distributions between different sources have
significant overlap. The matching distributions directly verifies that
elemental composition is conserved as the plasma travels from the corona to the
solar wind, further validating it as a tracer of heating and acceleration
processes. The overlap of fractionation values between sources means it is not
possible to identify solar wind source regions solely by comparing solar wind
and coronal composition measurements, but a comparison can be used to verify
consistency with predicted spacecraft-corona connections.Comment: Accepted version; 8 pages, 7 figure
Identities for hyperelliptic P-functions of genus one, two and three in covariant form
We give a covariant treatment of the quadratic differential identities
satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of
genera 1, 2 and 3
A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary
A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts
- …