As the solar wind propagates through the heliosphere, dynamical processes
irreversibly erase the signatures of the near-Sun heating and acceleration
processes. The elemental fractionation of the solar wind should not change
during transit however, making it an ideal tracer of these processes. We aimed
to verify directly if the solar wind elemental fractionation is reflective of
the coronal source region fractionation, both within and across different solar
wind source regions. A backmapping scheme was used to predict where solar wind
measured by the Advanced Composition Explorer (ACE) originated in the corona.
The coronal composition measured by the Hinode Extreme ultraviolet Imaging
Spectrometer (EIS) at the source regions was then compared with the in-situ
solar wind composition. On hourly timescales there was no apparent correlation
between coronal and solar wind composition. In contrast, the distribution of
fractionation values within individual source regions was similar in both the
corona and solar wind, but distributions between different sources have
significant overlap. The matching distributions directly verifies that
elemental composition is conserved as the plasma travels from the corona to the
solar wind, further validating it as a tracer of heating and acceleration
processes. The overlap of fractionation values between sources means it is not
possible to identify solar wind source regions solely by comparing solar wind
and coronal composition measurements, but a comparison can be used to verify
consistency with predicted spacecraft-corona connections.Comment: Accepted version; 8 pages, 7 figure