5,924 research outputs found

    Diffusion behavior of water confined in deformed carbon nanotubes

    Full text link
    We use molecular dynamics simulations to study the diffusion of water inside deformed carbon nanotubes, with different degrees of eccentricity at 300K. We found a water structural transition between tubular-like to single-file for the (7,7) nanotubes associated with a change from a high to low mobility regimes. The water which in the undeformed (9,9) nanotubes is frozen, becomes liquid for the distortion above a certain threshold. These water diffusion enhancement (suppresion) is related to a reduction (increase) in the number of hydrogen bonds. This suggests that the shape of the nanotube is a particularly important ingredient when considering the dynamical and structural properties of confined water.Comment: 16 pages, 9 figure

    Thermal diffusion by Brownian motion induced fluid stress

    Full text link
    The Ludwig-Soret effect, the migration of a species due to a temperature gradient, has been extensively studied without a complete picture of its cause emerging. Here we investigate the dynamics of DNA and spherical particles sub jected to a thermal gradient using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the DNA molecules will migrate to colder regions of the channel, an observation also made in the experiments of Duhr, et al[1]. In fact, the thermal diffusion coefficient found agrees quantitatively with the experimental value. We also observe that the thermal diffusion coefficient decreases as the radius of the studied spherical particles increases. Furthermore, we observe that the thermal fluctuations-fluid momentum flux coupling induces a gradient in the stress which leads to thermal migration in both systems.Comment: 6 pages, 5 figue

    The Nucleon Spectral Function at Finite Temperature and the Onset of Superfluidity in Nuclear Matter

    Get PDF
    Nucleon selfenergies and spectral functions are calculated at the saturation density of symmetric nuclear matter at finite temperatures. In particular, the behaviour of these quantities at temperatures above and close to the critical temperature for the superfluid phase transition in nuclear matter is discussed. It is shown how the singularity in the thermodynamic T-matrix at the critical temperature for superfluidity (Thouless criterion) reflects in the selfenergy and correspondingly in the spectral function. The real part of the on-shell selfenergy (optical potential) shows an anomalous behaviour for momenta near the Fermi momentum and temperatures close to the critical temperature related to the pairing singularity in the imaginary part. For comparison the selfenergy derived from the K-matrix of Brueckner theory is also calculated. It is found, that there is no pairing singularity in the imaginary part of the selfenergy in this case, which is due to the neglect of hole-hole scattering in the K-matrix. From the selfenergy the spectral function and the occupation numbers for finite temperatures are calculated.Comment: LaTex, 23 pages, 21 PostScript figures included (uuencoded), uses prc.sty, aps.sty, revtex.sty, psfig.sty (last included

    Extraction of the electron mass from gg factor measurements on light hydrogenlike ions

    Full text link
    The determination of the electron mass from Penning-trap measurements with 12^{12}C5+^{5+} ions and from theoretical results for the bound-electron gg factor is described in detail. Some recently calculated contributions slightly shift the extracted mass value. Prospects of a further improvement of the electron mass are discussed both from the experimental and from the theoretical point of view. Measurements with 4^4He+^+ ions will enable a consistency check of the electron mass value, and in future an improvement of the 4^4He nuclear mass and a determination of the fine-structure constant

    The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency

    Get PDF
    OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias. DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network. RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients. CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common

    Field and Temperature Dependence of the Superfluid Density in LaO_{1-x}F_xFeAs Superconductors: A Muon Spin Relaxation Study

    Full text link
    We present zero field and transverse field \muSR experiments on the recently discovered electron doped Fe-based superconductor LaO_{1-x}F_xFeAs. The zero field experiments on underdoped (x=0.075) and optimally doped (x=0.1) samples rule out any static magnetic order above 1.6 K in these superconducting samples. From transverse field experiments in the vortex phase we deduce the temperature and field dependence of the superfluid density. Whereas the temperature dependence is consistent with a weak coupling BCS s-wave or a dirty d-wave gap function scenario, the field dependence strongly evidences unconventional superconductivity. We obtain the in-plane penetration depth of \lambda_{ab} (0) = 254(2)nm for LaO_{0.9}F_{0.1}FeAs and \lambda_{ab} (0) = 364(8)nm for LaO_{0.925}F_{0.075}FeAs. Further evidence for unconventional superconductivity is provided by the ratio of T_c versus the superfluid density, which is close to the Uemura line of hole doped high-T_c cuprates.Comment: 5 pages, 5 figure

    Triggering up states in all-to-all coupled neurons

    Full text link
    Slow-wave sleep in mammalians is characterized by a change of large-scale cortical activity currently paraphrased as cortical Up/Down states. A recent experiment demonstrated a bistable collective behaviour in ferret slices, with the remarkable property that the Up states can be switched on and off with pulses, or excitations, of same polarity; whereby the effect of the second pulse significantly depends on the time interval between the pulses. Here we present a simple time discrete model of a neural network that exhibits this type of behaviour, as well as quantitatively reproduces the time-dependence found in the experiments.Comment: epl Europhysics Letters, accepted (2010

    Self-consistent treatment of the self-energy in nuclear matter

    Full text link
    The influence of hole-hole propagation in addition to the conventional particle-particle propagation, on the energy per nucleon and the momentum distribution is investigated. The results are compared to the Brueckner-Hartree-Fock (BHF) calculations with a continuous choice and conventional choice for the single-particle spectrum. The Bethe-Goldstone equation has been solved using realistic NNNN interactions. Also, the structure of nucleon self-energy in nuclear matter is evaluated. All the self-energies are calculated self-consistently. Starting from the BHF approximation without the usual angle-average approximation, the effects of hole-hole contributions and a self-consistent treatment within the framework of the Green function approach are investigated. Using the self-consistent self-energy, the hole and particle self-consistent spectral functions including the particle-particle and hole-hole ladder contributions in nuclear matter are calculated using realistic NNNN interactions. We found that, the difference in binding energy between both results, i.e. BHF and self-consistent Green function, is not large. This explains why is the BHF ignored the 2h1p contribution.Comment: Preprint 20 pages including 15 figures and one tabl

    Monte Carlo study of Si(111) homoepitaxy

    Full text link
    An attempt is made to simulate the homoepitaxial growth of a Si(111) surface by the kinetic Monte Carlo method in which the standard Solid-on-Solid model and the planar model of the (7x7) surface reconstruction are used in combination. By taking account of surface reconstructions as well as atomic deposition and migrations, it is shown that the effect of a coorparative stacking transformation is necessary for a layer growth.Comment: 4 pages, 5 figures. For Fig.1 of this article, please see Fig.2 of Phys.Rev. B56, 3583 (1997). To appear in Phys.Rev.B. (June 1998
    corecore