53 research outputs found

    Hypercube matrix computation task

    Get PDF
    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18)

    Treatment utilization and outcomes in elderly patients with locally advanced esophageal carcinoma: A review of the National Cancer Database

    Get PDF
    For elderly patients with locally advanced esophageal cancer, therapeutic approaches and outcomes in a modern cohort are not well characterized. Patients ≥70 years old with clinical stage II and III esophageal cancer diagnosed between 1998 and 2012 were identified from the National Cancer Database and stratified based on treatment type. Variables associated with treatment utilization were evaluated using logistic regression and survival evaluated using Cox proportional hazards analysis. Propensity matching (1:1) was performed to help account for selection bias. A total of 21,593 patients were identified. Median and maximum ages were 77 and 90, respectively. Treatment included palliative therapy (24.3%), chemoradiation (37.1%), trimodality therapy (10.0%), esophagectomy alone (5.6%), or no therapy (12.9%). Age ≥80 (OR 0.73), female gender (OR 0.81), Charlson-Deyo comorbidity score ≥2 (OR 0.82), and high-volume centers (OR 0.83) were associated with a decreased likelihood of palliative therapy versus no treatment. Age ≥80 (OR 0.79) and Clinical Stage III (OR 0.33) were associated with a decreased likelihood, while adenocarcinoma histology (OR 1.33) and nonacademic cancer centers (OR 3.9), an increased likelihood of esophagectomy alone compared to definitive chemoradiation. Age ≥80 (OR 0.15), female gender (OR 0.80), and non-Caucasian race (OR 0.63) were associated with a decreased likelihood, while adenocarcinoma histology (OR 2.10) and high-volume centers (OR 2.34), an increased likelihood of trimodality therapy compared to definitive chemoradiation. Each treatment type demonstrated improved survival compared to no therapy: palliative treatment (HR 0.49) to trimodality therapy (HR 0.25) with significance between all groups. Any therapy, including palliative care, was associated with improved survival; however, subsets of elderly patients with locally advanced esophageal cancer are less likely to receive aggressive therapy. Care should be taken to not unnecessarily deprive these individuals of treatment that may improve survival

    Osteoarthritis: 119. The Effectiveness of Exercise Therapy with and without Manual Therapy for Hip Osteoarthritis: A Multicentre Randomised Controlled Trial

    Get PDF
    Background: Current evidence indicates that exercise therapy (ET) has a short and medium-term benefit for hip osteoarthritis (OA), but evidence is inconclusive regarding the effect of manual therapy (MT). The primary aim of this randomised controlled trial was to determine the effectiveness of ET with and without MT on clinical outcomes for individuals with hip OA. A secondary aim was to ascertain the effect of an 8-week waiting period on outcomes. Methods: 131 men and women with hip OA recruited in four hospitals were initially randomised to one of three groups: ET (n = 45), a combination of ET and MT (n = 43) and wait-list control (n = 43). The two intervention groups underwent individualised ET or ET/MT for 8 weeks. Patients in the control group waited 8 weeks and were randomised to receive either ET or ET/MT after 9 week follow-up, and pooled with original treatment group data: ET (n = 66) and ET/ MT (n = 65). All participants were followed up at 9 and 18 weeks and the control group was reassessed at 27 weeks (18 weeks post-treatment) by the same blinded assessor. The primary outcome measure was the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Other outcomes included sit-to-stand, 50-foot walk test, pain severity, hip range of motion (ROM), anxiety, depression, quality of life (QOL), analgesic usage, physical activity, patient-perceived change and patient satisfaction. Intention-to-treat analysis was performed to determine within-group change and between-group differences for the three groups at baseline and 9 weeks, and the two treatment groups at baseline, 9 and 18 weeks. Results: Eight patients (6.1%) were lost to follow-up at 9 weeks and 19 (14.5%) were lost to follow-up by 18 weeks. Both ET (n = 66) and ET/MT groups (n = 65) showed significant within-group improvements in WOMAC, pain severity, sit-to-stand and HROM measures at 9 weeks, which were still evident at 18 weeks. There was no significant within-group change in anxiety, depression, QOL, analgesic usage, 50-foot walk test or physical activity. There was no significant difference between the two intervention groups for any of the outcomes. Regarding the results of the original ET, ET/MT and control group allocation, there was a significant improvement in one or both ET and ET/MT groups compared with the control group in the same outcomes, as well as patient perceived improvement at 9 weeks. There was no significant difference between the three groups in analgesic usage, WOMAC stiffness subscale, sit-to-stand and 50 foot walk tests, QOL and physical activity. There was an overall deterioration in anxiety and depression scores. Conclusions: The addition of MT to an 8 week programme of ET for hip OA resulted in similar improvements in pain, function and ROM at 9 and 18 weeks. The significant improvement which occurred in the same outcomes in the two treatment groups compared with a wait-list control of 8 weeks has implications for waiting list management Disclosure statement: The authors have declared no conflicts of interes

    Using Non-Homogeneous Models of Nucleotide Substitution to Identify Host Shift Events: Application to the Origin of the 1918 ‘Spanish’ Influenza Pandemic Virus

    Get PDF
    Nonhomogeneous Markov models of nucleotide substitution have received scant attention. Here we explore the possibility of using nonhomogeneous models to identify host shift nodes along phylogenetic trees of pathogens evolving in different hosts. It has been noticed that influenza viruses show marked differences in nucleotide composition in human and avian hosts. We take advantage of this fact to identify the host shift event that led to the 1918 ‘Spanish’ influenza. This disease killed over 50 million people worldwide, ranking it as the deadliest pandemic in recorded history. Our model suggests that the eight RNA segments which eventually became the 1918 viral genome were introduced into a mammalian host around 1882–1913. The viruses later diverged into the classical swine and human H1N1 influenza lineages around 1913–1915. The last common ancestor of human strains dates from February 1917 to April 1918. Because pigs are more readily infected with avian influenza viruses than humans, it would seem that they were the original recipient of the virus. This would suggest that the virus was introduced into humans sometime between 1913 and 1918

    The History of Communications and its Implications for the Internet

    Full text link

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Cryptococcal meningitis: A neglected NTD?

    Get PDF
    Although HIV/AIDS has been anything but neglected over the last decade, opportunistic infections (OIs) are increasingly overlooked as large scale donors shift their focus from acute care to prevention and earlier antiretroviral treatment (ART) initiation. Of these OIs, cryptococcal meningitis, a deadly invasive fungal infection, continues to affect hundreds of thousands of HIV patients with advanced disease each year and is responsible for an estimated 15%-20% of all AIDS-related deaths [1,2]. Yet cryptococcal meningitis ranks amongst the most poorly funded “neglected” diseases in the world, receiving 0.2% of available relevant research and development (RandD) funding according to Policy Cures’ 2016 G-Finder Report [3,4]

    An integrated national scale SARS-CoV-2 genomic surveillance network

    Get PDF
    corecore