1,144 research outputs found

    Minimal Stability in Maximal Supergravity

    Get PDF
    Recently, it has been shown that maximal supergravity allows for non-supersymmetric AdS critical points that are perturbatively stable. We investigate this phenomenon of stability without supersymmetry from the sGoldstino point of view. In particular, we calculate the projection of the mass matrix onto the sGoldstino directions, and derive the necessary conditions for stability. Indeed we find a narrow window allowing for stable SUSY breaking points. As a by-product of our analysis, we find that it seems impossible to perturb supersymmetric critical points into non-supersymmetric ones: there is a minimal amount of SUSY breaking in maximal supergravity.Comment: 27 pages, 1 figure. v2: two typos corrected, published versio

    Locally stable non-supersymmetric Minkowski vacua in supergravity

    Get PDF
    We perform a general study about the existence of non-supersymmetric minima with vanishing cosmological constant in supergravity models involving only chiral superfields. We study the conditions under which the matrix of second derivatives of the scalar potential is positive definite. We show that there exist very simple and strong necessary conditions for stability that constrain the Kahler curvature and the ratios of the supersymmetry-breaking auxiliary fields defining the Goldstino direction. We then derive more explicitly the implications of these constraints in the case where the Kahler potential for the supersymmetry-breaking fields is separable into a sum of terms for each of the fields. We also discuss the implications of our general results on the dynamics of moduli fields arising in string compactifications and on the relative sizes of their auxiliary fields, which are relevant for the soft terms of matter fields. We finally comment on how the idea of uplifting a supersymmetric AdS vacuum fits into our general study

    Moduli stabilization with positive vacuum energy

    Get PDF
    We study the effect of anomalous U(1) gauge groups in string theory compactification with fluxes. We find that, in a gauge invariant formulation, consistent AdS vacua appear breaking spontaneously supergravity. Non vanishing D-terms from the anomalous symmetry act as an uplifting potential and could allow for de Sitter vacua. However, we show that in this case the gravitino is generically (but not always) much heavier than the electroweak scale. We show that alternative uplifting scheme based on corrections to the Kahler potential can be compatible with a gravitino mass in the TeV range.Comment: 20 pages, 1 figur

    A new player in cartilage homeostasis: adiponectin induces nitric oxide synthase type II and pro-inflammatory cytokines in chondrocytes

    Get PDF
    SummaryObjectiveRecent studies revealed a close connection between adipose tissue, adipokines and articular degenerative inflammatory diseases such as rheumatoid arthritis (RA) and osteoarthritis (OA). The goal of this work was to investigate the activity of adiponectin in human and murine chondrocytes and to study its functional role in the modulation of nitric oxide synthase type II (NOS2). For completeness, interleukin (IL)-6, IL-1β, matrix metalloproteinase (MMP)-2, MMP-3, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, prostaglandin E2 (PGE2), leukotriene B4 (LTB4), tumor necrosis factor alpha (TNF)-α and monocyte chemoattractant protein-1 (MCP-1) accumulation have been evaluated in adiponectin-stimulated chondrocytes cell culture supernatants.MethodsMurine ATDC5 cell line, C28/I2, C20A4, TC28a2 human immortalized chondrocytes, and human cultured chondrocytes were used. Nitrite accumulation was determined by Griess reaction. Adiponectin receptors (AdipoRs) expression was evaluated by immunofluorescence microscopy and confirmed by reverse transcriptase-polymerase chain reaction. NOS2 expression was evaluated by Western blot analysis whereas cytokines, prostanoids and metalloproteinases production was evaluated by specific enzyme-linked immunosorbent assays.ResultsHuman and murine chondrocytes express functional AdipoRs. Adiponectin induces NOS2. This effect is inhibited by aminoguanidine, dexamethasone and by a selective inhibitor of phosphatidylinositol 3-kinase. In addition, adiponectin is able to increase IL-6, MMP-3, MMP-9 and MCP-1 by murine cultured chondrocytes whereas it was unable to modulate TNF-α, IL-1β, MMP-2, TIMP-1, PGE2 and LTB4 release.ConclusionsThese results bind more closely the interactions between fat-derived adipokines and articular inflammatory diseases, and suggest that adiponectin is a novel key element in the maintenance of cartilage homeostasis which might be considered as a potential therapeutical target in joint degenerative diseases

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure

    Effects of heavy modes on vacuum stability in supersymmetric theories

    Get PDF
    We study the effects induced by heavy fields on the masses of light fields in supersymmetric theories, under the assumption that the heavy mass scale is much higher than the supersymmetry breaking scale. We show that the square-masses of light scalar fields can get two different types of significant corrections when a heavy multiplet is integrated out. The first is an indirect level-repulsion effect, which may arise from heavy chiral multiplets and is always negative. The second is a direct coupling contribution, which may arise from heavy vector multiplets and can have any sign. We then apply these results to the sGoldstino mass and study the implications for the vacuum metastability condition. We find that the correction from heavy chiral multiplets is always negative and tends to compromise vacuum metastability, whereas the contribution from heavy vector multiplets is always positive and tends on the contrary to reinforce it. These two effects are controlled respectively by Yukawa couplings and gauge charges, which mix one heavy and two light fields respectively in the superpotential and the Kahler potential. Finally we also comment on similar effects induced in soft scalar masses when the heavy multiplets couple both to the visible and the hidden sector.Comment: LaTex, 24 pages, no figures; v2 some comments and references adde

    No metastable de Sitter vacua in N=2 supergravity with only hypermultiplets

    Get PDF
    We study the stability of vacua with spontaneously broken supersymmetry in N = 2 supergravity theories with only hypermultiplets. Focusing on the projection of the scalar mass matrix along the sGoldstino directions, we are able to derive a universal upper bound on the lowest mass eigenvalue. This bound only depends on the gravitino mass and the cosmological constant, but not on the details of the quaternionic manifold spanned by the scalar fields. Comparing with the Breitenlohner-Freedman bound shows that metastability requires the cosmological constant to be smaller than a certain negative critical value. Therefore, only AdS vacua with a sufficiently negative cosmological constant can be stable, while Minkowski and dS vacua necessarily have a tachyonic direction

    Exact Superpotentials, Theories with Flavor and Confining Vacua

    Full text link
    In this paper we study some interesting properties of the effective superpotential of N=1 supersymmetric gauge theories with fundamental matter, with the help of the Dijkgraaf--Vafa proposal connecting supersymmetric gauge theories with matrix models. We find that the effective superpotential for theories with N_f fundamental flavors can be calculated in terms of quantities computed in the pure (N_f=0) gauge theory. Using this property we compute in a remarkably simple way the exact effective superpotential of N=1 supersymmetric theories with fundamental matter and gauge group SU(N_c), at the point in the moduli space where a maximal number of monopoles become massless (confining vacua). We extend the analysis to a generic point of the moduli space, and show how to compute the effective superpotential in this general case.Comment: 16 pages, no figure

    Metastable de Sitter vacua in N=2 to N=1 truncated supergravity

    Get PDF
    We study the possibility of achieving metastable de Sitter vacua in general N=2 to N=1 truncated supergravities without vector multiplets, and compare with the situations arising in N=2 theories with only hypermultiplets and N=1 theories with only chiral multiplets. In N=2 theories based on a quaternionic manifold and a graviphoton gauging, de Sitter vacua are necessarily unstable, as a result of the peculiar properties of the geometry. In N=1 theories based on a Kahler manifold and a superpotential, de Sitter vacua can instead be metastable provided the geometry satisfies some constraint and the superpotential can be freely adjusted. In N=2 to N=1 truncations, the crucial requirement is then that the tachyon of the mother theory be projected out from the daughter theory, so that the original unstable vacuum is projected to a metastable vacuum. We study the circumstances under which this may happen and derive general constraints for metastability on the geometry and the gauging. We then study in full detail the simplest case of quaternionic manifolds of dimension four with at least one isometry, for which there exists a general parametrization, and study two types of truncations defining Kahler submanifolds of dimension two. As an application, we finally discuss the case of the universal hypermultiplet of N=2 superstrings and its truncations to the dilaton chiral multiplet of N=1 superstrings. We argue that de Sitter vacua in such theories are necessarily unstable in weakly coupled situations, while they can in principle be metastable in strongly coupled regimes.Comment: 40 pages, no figure

    A no-go for no-go theorems prohibiting cosmic acceleration in extra dimensional models

    Full text link
    A four-dimensional effective theory that arises as the low-energy limit of some extra-dimensional model is constrained by the higher dimensional Einstein equations. Steinhardt & Wesley use this to show that accelerated expansion in our four large dimensions can only be transient in a large class of Kaluza-Klein models that satisfy the (higher dimensional) null energy condition [1]. We point out that these no-go theorems are based on a rather ad-hoc assumption on the metric, without which no strong statements can be made.Comment: 20 page
    • …
    corecore